• 제목/요약/키워드: carbon nanoparticles

검색결과 408건 처리시간 0.025초

질소가 포함된 탄소나노튜브의 질소 원자를 이용한 이중 금속 촉매 제조 및 그의 수소 발생 촉매 특성 분석 (Facile Fabrication of Bimetallic Catalysts via Selective N atoms of N-Doped Carbon Nanotubes and Their Superior Catalytic Activities for Hydrogen Generation)

  • 신원호;정형모;최윤정;강정구
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.111.2-111.2
    • /
    • 2010
  • One-dimensional nanostructures such as carbon nanotubes could be ideal templates for formation of metallic nanoparticles. Furthermore, bimetallic component nanoparticles have recently been interesting issues for having high catalytic activity. This work provides both a facile method to synthesize bimetallic catalysts via N atoms of carbon nanotubes and also a picture about how to design the optimal bimetallic catalyst for hydrogen generation from the hydrogen storage material. In principle, the ratio of one component to another component could be generically extended to fabricate the high-performance bimetallic catalysts on host nanostructures. Indeed, we demonstrate that the bimetallic catalyst composed of the optimum composition results in the excellent hydrogen generation property from an aqueous borane ammonia solution, thus being capable of satisfying the Depart of Energy in USA target required for many advanced applications even with the small amount of our bimetallic catalysts attached onto the N-doped carbon nanotubes. This high hydrogen generation rate is found to be attributed to the optimal distance between active Pt and cheap Ni atoms for effective hydrogen generation.

  • PDF

Anode Material Nanoparticles on Carbon Materials by Electrodeposition for Stability Anodes of Lithium Ion Battery

  • 최수정;우선확;이지희;박진환;황성우;황동목
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.419-420
    • /
    • 2012
  • Lithium-ion battery (LIB) usually used for valuable electronic devices are extended to applications. High stability negative electrode materials for LIB were investigated using electrodeposition of nanoparticles (NPs) on the nanostructured carbon. NPs with about 70 nm diameters were evenly prepared on the graphitic carbon materials using electrodeposition process at room temperature. It was observed that the NPs were homogeneously embedded into not only external surface but bottom part of the graphitic carbon network. The graphitic carbon material covered with NPs enables facile electron transport owing to the network structure and improves structural collapse during cycling. This facile room temperature process is expected to be applicable to other anode materials such as Sn and Al for the anode of LIB.

  • PDF

Ni Nanoparticles이 doping된 Multiwall Carbon Nanotubes의 수소저장 특성에 관한 연구 (Hydrogen Storage in Ni Nanoparticles-Dispersed Multiwall Carbon Nanotubes)

  • 이호;김진호;이재영
    • 한국수소및신에너지학회논문집
    • /
    • 제13권1호
    • /
    • pp.74-82
    • /
    • 2002
  • Ni nanoparticles이 표면에 분산된 mutiwall carbon nanotubes (MWNTs)의 수소저장 특성을 분석하였다. Metal nanoparticles의 분산 방법은 incipient wetness impregnation procedure을 사용하였는데, 이러한 Ni catalysts의 역할은 기존에 알려진 Li, K doping과 같은 개념으로 기상의 수소를 분해하여 carbon 표면에 chemical adsorption 시키는 역할을 하게 된다. 실제로 Ni nanoparticles이 6wt% loading된 경우에는 thermal desorption spectra를 분석한 결과 ~2.8wt% hydrogen이 ~340-520K의 온도범위에서 방출되는 것을 관찰할 수 있었다. Kissingers plot을 통해서 MWNTs와 hydrogen과 interaction energy를 구한 결과 ${\sim}31kJ/molH_2$를 얻을 수 있었으며 이 값은 기존의 SWNTs에 hydrogen이 physi-sorption에서 실험적으로 얻을 수 있었던 값보다 1.5배 큰 값이라고 할 수 있다. 자세한 수소저장 기구를 분석하기 위해서 FT-IR분석을 한 결과 C-Hn stretching vibrations이 관찰되었으며 mono-hydride와 weak di-hydride $sp^3$가 형성된 것으로 해석 될 수 있었다. 이와 같은 결과는 Ni nanoparticle들이 예상과 같이 hydrogen molecules을 dissociation하는 역할을 하는 것을 의미한다. 연속적인 thermal desorption 실험을 통해 가역성도 평가하였다.

전기선폭발법에 의해 카본 코팅된 Cu 나노분말의 제조 및 특성 연구 (Fabrication and Characterization of Carbon-Coated Cu Nanopowders by Pulsed Wire Evaporation Method)

  • 이희민;박중학;홍성모;엄영랑;이창규
    • 한국분말재료학회지
    • /
    • 제16권4호
    • /
    • pp.243-248
    • /
    • 2009
  • Carbon-coated Cu nanopowders with core/shell structure have been successfully fabricated by pulsed wire evaporation (PWE) method, in which a mixed gas of Ar/$CH_4$ (10 vol.%) was used as an ambient gas. The characterization of the samples was carried out using x-ray diffraction (XRD), scanning electron microscope (SEM), and high resolution transmission electron microscope (HRTEM). It was found that the nanoparticles show a spherical morphology with the size ranging of 10-40 nm and are covered with graphite layers of 2-4 nm. When oxygen-passivated Cu nanopowders were annealed under flowing argon gas (600 and 800$^{\circ}C$), the crystallinity of $Cu_2O$ phase and the particle size gradually increased. On the other hand, carbon-coated Cu nanopowders remained similar to as-prepared case with no additional oxide or carbide phases even after the annealing, indicating that the metal nanoparticles are well protected by the carbon-coating layers.

Fabrication and Cell Culturing on Carbon Nanofibers/Nanoparticles Reinforced Membranes for Bone-Tissue Regeneration

  • Deng, Xu Liang;Yang, Xiao Ping
    • Carbon letters
    • /
    • 제13권3호
    • /
    • pp.139-150
    • /
    • 2012
  • Poly-L-lactic acid (PLLA), PLLA/hydroxyapatite (HA), PLLA/multiwalled carbon nanotubes (MWNTs)/HA, PLLA/trifluoroethanol (TFE), PLLA/gelatin, and carbon nanofibers (CNFs)/${\beta}$-tricalcium phosphate (${\beta}$-TCP) composite membranes (scaffolds) were fabricated by electrospinning and their morphologies, and mechanical properties were characterized for use in bone tissue regeneration/guided tissue regeneration. MWNTs and HA nanoparticles were well distributed in the membranes and the degradation characteristics were improved. PLLA/MWNTs/HA membranes enhanced the adhesion and proliferation of periodontal ligament cells (PDLCs) by 30% and inhibited the adhesion of gingival epithelial cells by 30%. Osteoblast-like MG-63 cells on the randomly fiber oriented PLLA/TEF membrane showed irregular forms, while the cells exhibited shuttle-like shapes on the parallel fiber oriented membrane. Classical supersaturated simulated body fluids were modified by $CO_2$ bubbling and applied to promote the biomineralization of the PLLA/gelatin membrane; this resulted in predictions of bone bonding bioactivity of the substrates. The ${\beta}$-TCP membranes exhibit good biocompatibility, have an effect on PDLC growth comparable to that of pure CNF membrane, and can be applied as scaffolds for bone tissue regeneration.

Effect of Fe3O4 loading on the conductivities of carbon nanotube/chitosan composite films

  • Marroquin, Jason;Kim, H.J.;Jung, Dong-Ho;Rhee, Kyong-Yop
    • Carbon letters
    • /
    • 제13권2호
    • /
    • pp.126-129
    • /
    • 2012
  • Nanocomposite films were made by a simple solution casting method in which multi-walled carbon nanotubes (MWCNT) and magnetite nanoparticles ($Fe_3O_4$) were used as dopant materials to enhance the electrical conductivity of chitosan nanocomposite films. The films contained fixed CNT concentrations (5, 8, and 10 wt%) and varying $Fe_3O_4$ content. It was determined that a 1:1 ratio of CNT to $Fe_3O_4$ provided optimal conductivity according to dopant material loading. X-ray diffraction patterns for the nanocomposite films, were determined to investigate their chemical and phase composition, revealed that nanoparticle agglomeration occurred at high $Fe_3O_4$ loadings, which hindered the synergistic effect of the doping materials on the conductivity of the films.

공유결합으로 다공성 막에 고정화된 효소에 의한 이산화탄소 포집 (Carbon Dioxide Sequestration of Enzyme Covalently Immobilized on Porous Membrane)

  • 박진원
    • KSBB Journal
    • /
    • 제28권4호
    • /
    • pp.225-229
    • /
    • 2013
  • Bovine Carbonic anhydrase (BCA) was immobilized on a submicro-porous membrane through covalent immobilization. The immobilization was conducted on the porous membrane surface with the treatment of polyethyleneimine, glutaraldehyde, and the anhydrase, in sequence. The immobilization was confirmed using X-ray photon spectrometer. The pH values of carbon-dioxide saturated solution with buffer were monitored with respect to time to calculate the catalytic activities of hydration of carbon-dioxide for free and immobilized CA. The catalytic rate constant values for free CA, immobilized CA on polystyrene nanoparticles, and immobilized CA on a porous cellulose acetate membrane were 0.79, 0.67, and 0.56 $s^{-1}$, respectively. Reusability was studied up to 10 cycles of $CO_2$ sequestration. The activity for the CA immobilized on the membrane was kept to 95% after 10 cycles, and comparable to the CA on the nanoparticles. The stabilities for heat and storage were also investigated for the three cases. The results suggested that the CA immobilized the membrane had the least loss rate of the activity compared to the others. From this study, the porous membrane was feasible as a carrier for the CA immobilization in hydration and sequestration of carbon-dioxide.

음이온 교환막 수전해용 Pt-Fe/카본블랙 나노 촉매 제조 및 특성 (Preparation and Characterization of Pt-Fe/Carbon Black Nanocatalyst for Anion Exchange Membrane in Alkaline Electrolysis)

  • 조성국;이재영;이홍기
    • 한국수소및신에너지학회논문집
    • /
    • 제33권6호
    • /
    • pp.715-722
    • /
    • 2022
  • Pt-Fe/carbon black nanocatalysts were prepared by spontaneous reduction reaction of Platinum(II) acetylacetonate and Iron(II) acetylacetonate in a nucleophilic solvent and they were characterized by scanning electron microscopy (SEM), energy dispersive X-ray analyzer (EDS), thermogravimetric analyzer (TGA), transmission electron microscopy (TEM), Brunauer, Emmett and Teller (BET) surface area analysis and anion exchange membrane (AEM) water electrolysis test station. The distribution of the Pt and Fe nanoparticles on carbon black was observed by TEM, and the loading weight of Pt-Fe nanocatalysts on the carbon black was measured by TGA. Elemental ratio of Fe:Pt was estimated by EDS and it was found that elemental ratio of Pt and Fe was changed in the range of 1:0 to 0:1, and the loading weight of Pt-Fe nanoparticles on the carbon black was 5.95-6.78 wt%. Specific surface area was greatly reduced because Pt-Fe nanocatalysts blocked the pores. I-V characteristics were estimated.

Poly(3,4-ethylenedioxythiophene)을 이용한 Core/shell 나노입자와 원자이동 라디칼중합 공정에 의한 다중벽 탄소나노튜브 나노복합체 제조 (Preparation of Core/Shell Nanoparticles Using Poly(3,4-ethylenedioxythiophene) and Multi-Walled Carbon Nanotube Nanocomposites via an Atom Transfer Radical Polymerization)

  • 주영태;진선미;김양수
    • 폴리머
    • /
    • 제33권5호
    • /
    • pp.452-457
    • /
    • 2009
  • 다중벽 탄소나노튜브 및 전도성 고분자인 PEDOT으로 이루어진 하이브리드 나노재료를 제조하였다. 다중벽 탄소나노튜브 표면에 처리반응을 수행함으로써 -Br 특성기를 갖는 다중벽 탄소나노튜브를 제조하였으며, 이를 중합반응의 개시제로 사용하였다. 이와 함께 MMA를 사용하여 촉매와 리간드 존재 하에서 원자이동 라디칼중합 공정을 수행함으로써 다중벽 탄소나노튜브 표면에 PMMA가 공유결합된 나노복합체를 제조하였다. 미니에멀젼 중합공정을 통하여 제조된 PS 수용성 에멀젼에 EDOT과 산화가를 투입하여 산화중합을 수행함으로써 core-shell 구조를 갖는 PEDOT/PS 나노입자를 제조하였다. 실란화합물로 표면 처리한 silica 입자를 PEDOT:poly(styrene sulfonate) (PSS) 수용성 분산액에 투입한 후 표면화학 반응과정을 수행함으로써 silica 외벽에 PEDOT:PSS가 코팅된 나노입자를 제조하였다. 하이브리드 나노재료들은 TEM, FE-SEM, TGA, EDX, UV 그리고 FT-IR 등을 사용하여 분석되었다.

염료감응 태양전지의 비백금 상대전극을 위한 니켈 나노입자-흑연질 탄소나노섬유 복합체 (Ni Nanoparticles-Graphitic Carbon Nanofiber Composites for Pt-Free Counter Electrode in Dye-Sensitized Solar Cells)

  • 오동현;구본율;이유진;안혜란;안효진
    • 한국재료학회지
    • /
    • 제26권11호
    • /
    • pp.649-655
    • /
    • 2016
  • Ni nanoparticles (NPs)-graphitic carbon nanofiber (GCNF) composites were fabricated using an electrospinning method. The amounts of Ni precursor used as catalyst for the catalytic graphitization were controlled at 0, 2, 5, and 8 wt% to improve the photovoltaic performances of the nanoparticles and make them suitable for use as counter electrodes for dye-sensitized solar cells (DSSCs). As a result, Ni NPs-GCNF composites that were fabricated with 8 wt% Ni precursors showed a high circuit voltage (0.73 V), high photocurrent density ($14.26mA/cm^2$), and superb power-conversion efficiency (6.72%) when compared to those characteristics of other samples. These performance improvements can be attributed to the reduced charge transport resistance that results from the synergetic effect of the superior catalytic activity of Ni NPs and the efficient charge transfer due to the formation of GCNF with high electrical conductivity. Thus, Ni NPs-GCNF composites may be used as promising counter electrodes in DSSCs.