• 제목/요약/키워드: carbon nanomaterials

검색결과 170건 처리시간 0.026초

기판 각도에 따른 탄소나노월의 성장 특성 (Growth Properties of Carbon Nanowall According to the Substrate Angle)

  • 김성윤;정연호;한재찬;최원석
    • 한국전기전자재료학회논문지
    • /
    • 제26권9호
    • /
    • pp.686-689
    • /
    • 2013
  • The carbon nanowall (CNW) is a carbon-based nanomaterials and it was constructed with vertical structure graphenes and it has the highest surface density among carbon-based nanostructures. In this study, we have checked the growth properties of CNW according to the substrate angle. Microwave plasma enhanced chemical vapor deposition (PECVD) system was used to grow CNW on Si substrate with methane ($CH_4$) and hydrogen ($H_2$) gases. And, we have changed the substrate angle from $0^{\circ}$ to $90^{\circ}$ in steps of $30^{\circ}$. The planar and vertical conditions of the grown CNWs according to the substrate angle were characterized by a field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS). In case of the growth angle increases, our experimental results showed that the length of the CNW was shortened and the content of carbon component was decreased.

개질된 탄소나노튜브/하이드로겔 복합막의 기체 투과 특성 (Gas Transport Behavior of Modified Carbon Nanotubes/Hydrogel Composite Membranes)

  • 윤희욱;이희대;박호범
    • 멤브레인
    • /
    • 제23권5호
    • /
    • pp.375-383
    • /
    • 2013
  • 나노 소재는 표면적이 매우 크고 크기나 기공이 균일하여 분리막에서 물질 전달통로나 특수한 기능성을 갖게 하는 소재로 이용이 가능하다. 그중에서도, 그래핀, 그래핀 옥사이드 및 탄소나노튜브와 같은 나노탄소 구조체에 대한 연구가 활발히 이루어지고 있다. 일차원 구조를 갖는 탄소나노튜브의 경우 우수한 열적, 화학적 및 기계적 성질을 가지고 있으나, 기존 연구에서는 주로 고분자와 혼합하여 기계적 물성을 강화하는 복합소재로서 사용됐으며, 응용분야의 한계를 가지고 있었다. 본 연구에서는 폴리 에틸렌 글리콜 다이아크릴레이트(PEGDA) 고분자 내에 개질된 탄소나노튜브를 혼합하여, 기체 분리막에서의 투과도 및 선택도의 변화를 관찰하였다.

전기방사를 이용한 슈퍼캐퍼시터용 금속산화물/탄소나노섬유 복합체 (Electrospun Metal Oxide/Carbon Nanofiber Composite Electrode for Supercapacitor Application)

  • 양갑승;김보혜
    • 공업화학
    • /
    • 제26권3호
    • /
    • pp.239-246
    • /
    • 2015
  • 나노 탄소재료를 복합화하면 기존 재료의 특성을 유지하면서 그 효율을 극대화할 수 있다. 여기에 이종원소를 부가하면 전기화학적인 특성이 디자인되므로, 나노 탄소재료의 복합화를 통해 한 종류의 나노 재료로부터 여러 강점을 얻을 수 있다. 특히 탄소나노섬유와 금속산화물을 복합화하면 탄소나노섬유의 전기이중층 뿐만 아니라 금속산화물의 산화 환원 반응을 이용하여 비축전 용량, 고율 특성, 수명 특성이 향상되고 높은 수준의 출력밀도가 유지되는 고용량 슈퍼 캐퍼시터용 전극 소재를 개발할 수 있다. 본 총설에서는 탄소의 고출력특성과 금속산화물의 고에너지 특성이 동시에 발현되는 금속산화물계 탄소나노섬유복합체의 제법과 응용에 대한 최신연구를 다루도록 하겠다.

A review: methane capture by nanoporous carbon materials for automobiles

  • Choi, Pil-Seon;Jeong, Ji-Moon;Choi, Yong-Ki;Kim, Myung-Seok;Shin, Gi-Joo;Park, Soo-Jin
    • Carbon letters
    • /
    • 제17권1호
    • /
    • pp.18-28
    • /
    • 2016
  • Global warming is considered one of the great challenges of the twenty-first century. In order to reduce the ever-increasing amount of methane (CH4) released into the atmosphere, and thus its impact on global climate change, CH4 storage technologies are attracting significant research interest. CH4 storage processes are attracting technological interest, and methane is being applied as an alternative fuel for vehicles. CH4 storage involves many technologies, among which, adsorption processes such as processes using porous adsorbents are regarded as an important green and economic technology. It is very important to develop highly efficient adsorbents to realize techno-economic systems for CH4 adsorption and storage. In this review, we summarize the nanomaterials being used for CH4 adsorption, which are divided into non-carbonaceous (e.g., zeolites, metal-organic frameworks, and porous polymers) and carbonaceous materials (e.g., activated carbons, ordered porous carbons, and activated carbon fibers), with a focus on recent research.

Relative Content Evaluation of Single-walled Carbon Nanotubes using UV-VIS-NIR Absorption Spectroscopy

  • Cha, Ok-Hwan;Jeong, Mun-Seok;Byeon, Clare C.;Jeong, Hyun;Han, Jong-Hun;Choi, Young-Chul;An, Kay-Hyeok;Oh, Kyung-Hui;Kim, Ki-Kang;Lee, Young-Hee
    • Carbon letters
    • /
    • 제10권1호
    • /
    • pp.9-13
    • /
    • 2009
  • We propose an evaluation method of the relative content of single-walled carbon nanotubes (SWCNT) in SWCNT soot synthesized by arc discharge using UV-VIS-NIR absorption spectroscopy. In this method, we consider the absorbance of semiconducting and metallic SWCNTs together to calculate the relative content of SWCNTs with respect to a highly purified reference. Our method provides the more reliable and realistic evaluation of SWCNT content with respect to the whole carbonaceous content than the previously reported method.

Recent Trends in Human Motion Detection Technology and Flexible/stretchable Physical Sensors: A Review

  • Park, Inkyu
    • 센서학회지
    • /
    • 제26권6호
    • /
    • pp.391-396
    • /
    • 2017
  • Human body motion detection is important in several industry sectors, such as entertainment, healthcare, rehabilitation, and so on. In this paper, we first discuss commercial human motion detection technologies (optical markers, MEMS acceleration sensors, infrared imaging, etc.) and then explain recent advances in the development of flexible and stretchable strain sensors for human motion detection. In particular, flexible and stretchable strain sensors that are fabricated using carbon nanotubes, silver nanowires, graphene, and other materials are reviewed.

Fabrication of nickel nanoparticles-embedded carbon particles by solution plasma in waste vegetable oil

  • Pansuwan, Gun;Phuksawattanachai, Surayouth;Kerdthip, Kraiphum;Sungworawongpana, Nathas;Nounjeen, Sarun;Anantachaisilp, Suranan;Kang, Jun;Panomsuwan, Gasidit;Ueno, Tomonaga;Saito, Nagahiro;Pootawang, Panuphong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권10호
    • /
    • pp.894-898
    • /
    • 2016
  • Solution plasma is a unique method which provides a direct discharge in solutions. It is one of the promising techniques for various applications including the synthesis of metallic/non-metallic nanomaterials, decomposition of organic compounds, and the removal of microorganism. In the context of nanomaterial syntheses, solution plasma has been utilized to produce carbon nanoparticles and metallic-carbon nanoparticle systems. The main purpose of this study was to synthesize nickel nanoparticles embedded in a matrix of carbon particles by solution plasma in one-step using waste vegetable oil as the carbon source. The experimental setup was done by simply connecting a bipolar pulsed power generator to nickel electrodes, which were submerged in the waste vegetable oil. Black powders of the nickel nanoparticles-embedded carbon (NiNPs/Carbon) particles were successfully obtained after discharging for 90 min. The morphology of the synthesized NiNPs/Carbon was investigated by a scanning electron microscope, which revealed a good dispersion of NiNPs in the carbon-particle matrix. The X-ray diffraction of NiNPs/Carbon clearly showed the co-existence of crystalline Ni nanostructures and amorphous carbon. The crystallite size of NiNPs (through the Ni (111) diffraction plane), as calculated by the Scherrer equation was found to be 64 nm. In addition, the catalytic activity of NiNPs/Carbon was evaluated by cyclic voltammetry in an acid solution. It was found that NiNPs/Carbon did not show a significant catalytic activity in the acid solution. Although this work might not be helpful in enhancing the activity of the fuel cell catalysts, it is expected to find application in other processes such as the CO conversion (by oxidation) and cyclization of organic compounds.

산업용제조시설과 폐기물처리시설에서 발생된 나노폐기물의 물리화학적 특성 및 안전관리방안 제시 (Suggestion of Physicochemical Characteristics and Safety Management in the Waste Containing Nanomaterials from Engineered Nano-materials Manufacturing Plants and Waste Treatment Facilities)

  • 김우일;연진모;조나현;김용준;엄남일;김기헌;이영기
    • 한국폐기물자원순환학회지
    • /
    • 제35권7호
    • /
    • pp.670-682
    • /
    • 2018
  • Engineered nanomaterials (ENMs) can be released to humans and the environment through the generation of waste containing engineered nanomaterials (WCNMs) and the use and disposal of nano-products. Nanoparticles can also be introduced intentionally or unintentionally into waste streams. This study examined WCNMs in domestic industries, and target nanomaterials, such as silicon dioxide, titanium oxide, zinc oxide, nano silver, and carbon nanotubes (CNTs), were selected. We tested 48 samples, such as dust, sludge, ash, and by-products from manufacturing facilities and waste treatment facilities. We analyzed leaching and content concentrations for heavy metals and hazardous constituents of the waste. Chemical compositions were also measured by XRD and XRF, and the unique properties of nano-waste were identified by using a particle size distribution analyzer and TEM. The dust and sludge generated from manufacturing facilities and the use of nanomaterials showed higher concentrations of metals such as lead, arsenic, chromium, barium, and zinc. Oiled cloths from facilities using nano silver revealed high concentrations of copper, and the leaching concentrations of copper and lead in fly ash were higher than those in bottom ash. In XRF measurements at the facilities, we detected compounds such as silicon dioxide, sulfur trioxide, calcium oxide, titanium dioxide, and zinc oxide. We found several chemicals such as calcium oxide and silicon dioxide in the bottom ash of waste incinerators.

그래핀 옥사이드 혼입 고강도 시멘트 모르타르의 Interfacial Transition Zone (ITZ) 특성에 관한 연구 (Investigation on the Characteristics of Interfacial Transition Zone (ITZ) of High-Strength Cement Mortar Incorporating Graphene Oxide)

  • 임수민;조성민;유준성;임승민;배성철
    • 한국건설순환자원학회논문집
    • /
    • 제10권3호
    • /
    • pp.343-350
    • /
    • 2022
  • 최근 취성재료인 콘크리트의 강도 발현에 가장 불리하게 작용하는 영역인 골재와 시멘트 복합체 사이 Interfacial transition zone (ITZ) 성능 개선을 위해 나노 실리카, 탄소나노튜브, 그래핀 옥사이드(GO) 등 나노물질을 활용한 방안이 제시되고 있다. 나노물질 중에서 우수한 분산성을 가진 GO는 ITZ 영역에 높은 비율로 존재하는 Ca2+과 화학적 결합을 형성하여 일반강도 콘크리트 내 ITZ 성능 개선에 효과적인 것으로 보고되었다. 본 연구에서 미소수화열 분석 및 Scanning electron microscope 이미지 분석 기법을 활용하여 도출한 GO 혼입에 따른 수화 발열량 변화와 ITZ의 두께 변화 및 표준사 주변 공극 분포 변화를 통해 GO가 고강도 시멘트 모르타르 내 ITZ 특성에 미치는 영향을 조사하였다.

탄소나노튜브 필름 제조 실험실의 세부작업별 공기 중 나노입자 노출 농도 (Monitoring Airborne Nanoparticle Concentrations by Task in a Laboratory Making Carbon Nanotube Films)

  • 하주현;신용철
    • 한국산업보건학회지
    • /
    • 제20권4호
    • /
    • pp.248-255
    • /
    • 2010
  • Airborne nanoparticle concentrations in three metrics (particle surface area concentration, particle number concentration, and particle mass concentrations) were measured by task in a laboratory making carbon nanotubes (CNTs) films using three direct reading instruments. Because of the conducted other researcher's experiment before the tasks, airborne nanoparticle surface area and number concentrations are the highest at the first time conducted weighing and mixing by sonication task, respectively. Because of the mist generated during mixing by sonication, the highest airborne nanoparticle surface area and PM1 concentrations were measured in the task among the total. Nanoparticle surface area concentrations at the researchers' breathing zones had high correlation (r=0.93, p<0.01) with those measured at an area in the laboratory. This result indicates that nanoparticles generated during the experiment contaminated the whole room air. When the experiment performed all the fume hoods weren't operated and making CNTs films task were conducted in the out of the fume hoods. In conclusion, researchers performing making CNTs film experiments were exposed to airborne nanoparticles generated during the experiment without adequate controls. We recommend that adequate controls should be implemented so that workers' exposures to airborne nanoparticle are limited to minimum levels.