• Title/Summary/Keyword: carbon nano-tubes

Search Result 61, Processing Time 0.026 seconds

Photocatalytic Degradation of E. coli and S. aureus by Multi Walled Carbon Nanotubes

  • Sharon, Madhuri;Datta, Suprama;Shah, Sejal;Sharon, Mahesh War;Soga, T.;Afre, Rakesh
    • Carbon letters
    • /
    • v.8 no.3
    • /
    • pp.184-190
    • /
    • 2007
  • Carbon Nano Tubes could be either metallic or semi-conducting in nature, depending on their diameter. Its photocatalytic behavior has given an impetus to use it as an anti-microbial agent. More than 95% Escherichia coli and Staphylococcus aureus bacteria got killed when exposed to Carbon Nano Tubes for 30 minutes in presence of sunlight. Carbon Nano Tubes are supposed to have smooth surface on to which it accumulates positive charges when exposed to light. The surface that is non illuminated has negative charge. At the cellular level microorganisms produce negative charges on the cell membrane, Therefore damaging effect of multi walled carbon nano tubes (exposed to light) on the microorganisms is possible. In this paper, photo catalytic killing of microbes by multi walled carbon nano tubes is reported. Killing was due to damage in the cell membrane, as seen in SEM micrographs. Moreover biochemical analysis of membrane as well as total cellular proteins by SDS PAGE showed that there was denaturation of membrane proteins as well as total proteins of both the microbes studied. The killed microbes that showed a decrease in number of protein bands (i.e. due to breaking down of proteins) also showed an increase in level of free amino acids in microbes. This further confirmed that proteins got denatured or broken down into shorter units of amino acids. Increased level of free amino acids was recorded in both the microbes treated with multi walled carbon nano tubes and sunlight.

Synthesis of High Purity Carbon Nano Fibers and Hydrogen from Propane Decomposition

  • Hussain, S.Tajammul;Gul, Sheraz;Mazhar, M.;Larachi, Faical
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.389-392
    • /
    • 2008
  • High purity carbon nano fibers/tubes (CNF/Ts) which contain 97% pure graphitic carbon are prepared by a new catalytic method. These carbon nano fibers/tubes are ready to use without any further purification. The striking feature of this method is the production of carbon nano fibers/tubes of narrow distribution range. The developed catalytic method also produces pure hydrogen. An additional advantage of this catalytic method is that catalyst can be reused without reactivation. Ni:Cu catalyst system is embodied into SCHOTT-DURAN filter disc of large pore size (40-100 mm). Due to the production of hydrogen in the reaction catalyst stability is enhanced and deactivation process is considerably slowed down.

Large amplitude forced vibration of functionally graded nano-composite plate with piezoelectric layers resting on nonlinear elastic foundation

  • Yazdi, Ali A.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.203-213
    • /
    • 2018
  • This paper presents a study of geometric nonlinear forced vibration of carbon nano-tubes (CNTs) reinforcement composite plates on nonlinear elastic foundations. The plate is bonded with piezoelectric layers. The von Karman geometric nonlinearity assumptions with classical plate theory are employed to obtain the governing equations. The Galerkin and homotopy perturbation method (HPM) are utilized to investigate the effect of carbon nano-tubes volume fractions, large amplitude vibrations, elastic foundation parameters, piezoelectric applied voltage on frequency ratio and primary resonance. The results indicate that the carbon nano-tube volume fraction, applied voltage and elastic foundation parameters have significant effect on the hardening response of carbon nanotubes reinforced composite (CNTRC) plates.

Methane hydrate formation Using Carbon Nano Tubes (탄소나노튜브를 이용한 메탄 하이드레이트 형성)

  • Park, Sung-Seek;Seo, Hyang-Min;Kim, Nam-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.549-552
    • /
    • 2009
  • Methane hydrate is crystalline ice-like compounds which formed methane gas enters within water molecules composed cavity at specially temperature and pressure condition, and water molecule and each other from physically-bond. $1m^3$ hydrate of pure methane can be decomposed to the maximum of $172m^3$ at standard condition. If these characteristics of hydrate are reversely utilized, natural gas is fixed into water in the form of hydrate solid. Therefore the hydrate is considered to be a great way to transport and store natural gas in large quantity. Especially the transportation cost is known to be 18~24% less than the liquefied transportation. However, when methane hydrate is formed artificially, the amount of consumed gas is relatively low due to a slow reaction rate between water and methane gas. In this study, for the better hydrate reaction rate, there is make nano fluid using ultrasonic dispersion of carbon nano tube. and then, Experiment with hydrate formation by nano fluid and methane gas reaction. The results show that when the carbon nano tubes of 0.004 wt% was added to pure water, the amount of consumed gas was about 300% higher than that in pure water and the hydrate formation time decreased.

  • PDF

Adsorption Characteristics of Non-degradable Eosin Y Dye by Carbon Nano Tubes (Carbon Nano Tubes에 의한 난분해성 염료 Eosin Y의 흡착 특성)

  • Lee, Min-Gyu;Yun, Jong-Won;Suh, Jung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.771-777
    • /
    • 2017
  • Adsorption characteristics of Eosin Y dye by carbon nano tubes (CNTs) were examined through batch experiments. CNTs used in the study had specific surface area of $106.9m^2/g$, porosity volume of $1.806cm^3/g$, and porosity diameter of $163.2{\AA}$, respectively. Adsorption experiments were carried out as function of contact time, initial solution pH (2~10), dye concentration (100, 150 and 200 mg/L), adsorbent dose (0.05~1.0 g) and temperature (293, 313 and 333 K). The adsorption was favoured at lower pHs and temperatures. Adsorption data were well described by the Langmuir model. The adsorption process followed the pseudo-second order kinetic model. The adsorption capacity decreased with increase in temperature. The results of the intraparticle diffusion model suggested that film diffusion and particle diffusion were simultaneously occured during the adsorption process. Thermodynamic studies suggested the spontaneous and endothermic nature of adsorption of Eosin Y dye onto CNTs.

Aeroelastic behavior of nano-composite beam-plates with double delaminations

  • Mousavi, S.B.;Yazdi, Ali A.
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.653-661
    • /
    • 2019
  • In this paper aeroelastic behavior of 3-phase nano-composite beam-plate with double delaminations is investigated. It is tried to study the effect of carbon nano-tubes (CNTs) on critical flutter pressure of reinforced damaged nano-composite structures. In this case, the CNTs are appending to the polymer matrix uniformly. The Eshelby-Mori-Tanaka model is used to obtain the effective material properties of 3-phase nano-composite beam-plate. To investigate the aeroelastic behavior of delaminated beam-plate subjected to supersonic flow, it is assumed that the damaged segments are forced to vibrate together. The boundary conditions and auxiliary conditions at edges of delaminated segments are used to predict critical flutter pressure. The influence of CNTs and different delamination parameters such as delamination length, axial position and its position through thickness are investigated on critical flutter pressure.

Effect of Allyl Modified/Silane Modified Multiwalled Carbon Nano Tubes on the Electrical Properties of Unsaturated Polyester Resin Composites

  • Swain, Sarojini;Sharma, Ram Avatar;Patil, Sandip;Bhattacharya, Subhendu;Gadiyaram, Srinivasa Pavan;Chaudhari, Lokesh
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.6
    • /
    • pp.267-272
    • /
    • 2012
  • Considering the properties of the carbon nano tubes (CNT), their inclusion into the polymer matrix vastly increases the properties of the resultant composite. However, this is not the case due to the poor interfacial adhesion of the CNT and the polymer matrix. The present approach focuses on increasing the interaction between the polymer matrix and the CNT through the chemical modification of the CNT resulting in allyl ester functionalized carbon nanotubes (ACNT) and silane functionalized carbon nano tubes (SCNT) which are capable of reacting with the polymer matrix during the curing reaction. The addition of ACNT/SCNT into unsaturated polyester resin (UPR) resulted in the improvement of the electrical properties of resulted nanocomposites in comparison to the CNT. The surface resistivity, volume resistivity, dielectric strength, dry arc resistivity, and the comparative tracking index of the nanocomposites were significantly improved in comparison to CNT. The chemical modification of CNT was confirmed via spectroscopy.

Desorption of Adsorbed Humic Acid on Carbon nano Tubes (카본나노튜브에 흡착된 휴믹산의 탈착에 관한 연구)

  • Jo, Mihyun;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.7
    • /
    • pp.81-89
    • /
    • 2013
  • Concerns have been raised over the impact of nano materials on soil and groundwater environment with the increasing attention to the potential applications of carbon nano materials in various fields. Particularly, carbon nano materials introduced into water environment readily make complexes with humic acid (HA) due to their hydrophobic nature, so there have been increasing numbers of studies on the interaction between HA and carbon nano materials. In this study, we investigated the solubility of HA and multiwalled carbon nanotubes (MWCNT) in three different surfactant solutions of sodium dodecyl sulfate (SDS), Brij 30 and Triton X-100, and evaluated whether the HA can be effectively desorbed from the surface of MWCNT by surfactant. The objective of this study was to determine the optimal adsorption condition for HA to MWCNT. Futhermore, sodium dodecyl sulfate (SDS), Brij 30, Triton X-100 were used to elucidate the effect of desorption and separation on adsorbed HA on MWCNT. As a result, HA solution with 12.7 mg of total organic carbon (TOC) and 5 mg of MWCNT showed the highest adsorption capacity at pH 3 reacted for 72 hrs. Weight solubilizing ratio (WSR) of surfactants on HA and MWCNT was calculated. HA had approximately 2 times lower adsorption capacity for the applied three surfactants compared to those of MWCNT, implying that the desorption of HA may occur from the HA/MWCNT complex. According to the results of adsorption isotherm and weight solubilizing ratio (WSR), the most effective surfactants was the SDS 1% soluiton, showing 53.63% desorption of HA at pH 3.

Development of flat type back-lamp using carbon nano tubes grown on glass substrate (유리기판 위에 성장된 카본나노튜브를 이용한 고휘도 램프 특성)

  • Lee, Yang-Doo;Lee, Duck-Jung;Park, Jeung-Hoon;Yoo, Jae-Eun;Lee, Yun-Hi;Jang, Jin;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04b
    • /
    • pp.89-92
    • /
    • 2002
  • Carbon nano tubes(CNTs) have been reported as field emission source because has a sharp tip, a high aspect tip, high chemical stability, high mechanical strength and low work function properties. In this study, we fabricated successfully the back-lamp of the I-inch flat type using CNTs, which was grown directly on cathode substrate of sodalime glass at low temperature. The brightness of CNT back-lamp is measured to $14 Kcd/m^{2}$ at $2000V_{dc}$ in spacing of $500{\mu}m$. And, the emission properties of packaged CNT back-lamp was analyzed as function of applying voltage and times.

  • PDF