• Title/Summary/Keyword: carbon forest

Search Result 884, Processing Time 0.025 seconds

A Practical Application and Development of Carbon Emission Factors for 4 Major Species of Warm Temperate Forest in Korea (난대지역 주요 4개 수종의 탄소배출계수 개발 및 적용)

  • Son, Yeong Mo;Kim, Rae Hyun;Kang, Jin Taek;Lee, Kwang Su;Kim, So Won
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.4
    • /
    • pp.593-598
    • /
    • 2014
  • In this study, we developed the carbon emission factors for 4 major species of warm-temperate region in Korea, and tried to provide their carbon emissions and removals estimates using these carbon emission factors. We selected Castanopsis cuspidata, Camellia japonica, Quercus acuta and Quercus glauca as target species and derived their carbon emission factors. The basic wood density that serve as one of the carbon emission factors were 0.583 for Castanopsis cuspidata, 0.657 for Camellia japonica, 0.833 for Quercus acuta and 0.763 for Quercus glauca and their uncertainties ranged from 5.3 to 17.9%. Biomass expansion factors were calculated as well: 1.386 for Castanopsis cuspidata, 2.621 for Camellia japonica, 1.701 for Quercus acuta and 2.123 for Quercus glauca and associated uncertainties varied from 14.7 to 30.5%. Lastly root-shoot ratios for each species were also determined: 0.454 for Castanopsis cuspidata, 0.356 for Camellia japonica, 0.191 for Quercus acuta and 0.299 for Quercus glauca with the uncertainties lying within a range from 19.8 to 35.7%. These three carbon emission factors including basic wood density had the uncertainties of less than 40% recommended by FAO. Therefore the application of country-specific emission factors seemed to provide quite accurate estimates of carbon emissions and removals. The estimation of the carbon stored in the 4 species were also conducted which amounted to $186.10tCO_2/ha$ for Castanopsis cuspidata, $280.63tCO_2/ha$ for Camellia japonica, $344.04tCO_2/ha$ for Quercus acuta and $278.91tCO_2/ha$ for Quercus glauca and their annual carbon removals were $6.65tCO_2/ha/yr$, $6.25tCO_2/ha/yr$, $11.70tCO_2/ha/yr$ and $12.29tCO_2/ha/yr$, respectively. This systematic assessment of forest resources can be a reliable source of information for managing evergreen broadleaved forest in warm temperate regions and thus serve as useful data for effective decision-making to address vegetation zone shifts due to climate change.

The Estimation of Stand Biomass and Net Carbon Removals Using Dynamic Stand Growth Model (동적 임분생장모델을 이용한 임분 바이오매스 및 탄소흡수량 추정)

  • Seo, Jeong-Ho;Son, Yeong-Mo;Lee, Kyeong-Hak;Lee, Woo-Kyun;Son, Yo-Hwan
    • Journal of Korea Foresty Energy
    • /
    • v.24 no.2
    • /
    • pp.37-45
    • /
    • 2005
  • This study presents a method how to estimate the change of stand volume, the stand biomass and the carbon removals, using dynamic stand growth model according to whether the practices for forest management are implemented or not. As a result, it shows that the rate of stand change was significantly high if the practices were implemented. Consequently, the change of carbon removals was also high. The carbon removals at the stand where the practices were not implemented, was estimated about 0.27tC/ha. And the carbon removals at the stand where the practices were implemented, was estimated 166.02tC/ha(thinning from above) and 163.75tC/ha(thinning from below). It is confirmed that the thinning activities has a great influence on the change of carbon removals and there was little difference of the carbon removals between thinning types. From this result, it is proved that forest management like thinning activities is prerequisite condition to improve the carbon removals of stand.

  • PDF

Carbon Storage of Exotic Slash Pine Plantations in Subtropical China

  • Jin, Ling;Liu, Yuanqiu;Ning, Jinkui;Liu, Liangying;Li, Xiaodong
    • Journal of Forest and Environmental Science
    • /
    • v.35 no.3
    • /
    • pp.150-158
    • /
    • 2019
  • Exotic conifer trees have been extensively planted in southern China because of their high apparent growth and yield. These fast-growing plantations are expected to persist as a considerable potential for temporary and long-term carbon sink to offset greenhouse gas emissions. However, information on the carbon storage across different age ranges in exotic pine plantations is often lacking. We first estimated the ecosystem carbon storage across different age ranges of exotic pine plantations in China by quantifying above- and below-ground ecosystem carbon pools. The carbon storage of each tree component of exotic pine (Pinus elliottii) increased significantly with increasing age in Duchang and Yiyang areas. The stem carbon storage except <10 years in Ji'an areas was the largest component among all other components, which accounts for about 50% of the total carbon storage followed by roots (~28%), branches (~18%), and foliage (~9%). The mean total tree carbon storage of slash pine plantations for <10, 10-20 and 20-30 years across three study areas was 3.69, 13.91 and $20.57Mg\;ha^{-1}$, respectively. The carbon stocks in understory and forest floor were age-independent. Total tree and soil were two dominant carbon pools in slash pine plantations at all age sequences. The carbon contribution of aboveground ecosystem increased with increasing age, while that of belowground ecosystem declined. The mean total ecosystem carbon storage of slash pine plantations for <10, 10-20 and 20-30 years across China was 30.26, 98.66 and $98.89Mg\;ha^{-1}$, respectively. Although subtropical climate in China was suitable for slash pine growth, the mean total carbon stocks in slash pine plantations at all age sequences from China were lower than that values reported in American slash pine plantations.

Stand Development Estimate and Carbon Stocks/Removals Assesment using Stand Growth Monitoring (생장모니터링을 통한 임분변화예측 및 탄소흡수.저장량 평가)

  • Son, Yeong-Mo;Lee, Kyeong-Hak;Kim, Rae-Hyun;Seo, Jeong-Ho
    • Journal of Korea Foresty Energy
    • /
    • v.25 no.2
    • /
    • pp.42-48
    • /
    • 2006
  • This study looked into the change of tree growth of five forest growth monitoring plots which were set up at the Undulyeong Hongchungun Kangwondo, and was accomplished to provide the basic data for the forest management calculating carbon storage and absorption in the Undulyeong area. Annual height and DBH growth were slowly progressed in the Pinus koraiensis, Larix kaempferi, and Pinus densiflora stand which were at young stage, but the growth rates of the other stands were lower than those young stands. The diameter class of the mixed forest and Quercus mongolica and Betala platyphylla stand was predicted to be similar as it is and those of Pinus koraiensis and Larix kaempferi stands were predicted to move to the upper diameter classes because of rapid growth rates of the those stands. As in the year 2005, total carbon storage of the Undulyeong model forest was increased by 155,000 TC(2.7%) compared with the previous year. During 2005, total carbon which was absorbed and stored according to growth of the forest was 166,174 TC and net carbon absorption (155,481 TC) increased by 2,736 TC (1.8%) compared with the previous year. Resultingly, the Undulyeong model forest is acting as a net sink and the net carbon absorption rate is slightly increasing recently.

  • PDF

Characteristics of accumulated soil carbon and soil respiration in temperate deciduous forest and alpine pastureland

  • Jeong, Seok-Hee;Eom, Ji-Young;Park, Ju-Yeon;Lee, Jae-Ho;Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • v.42 no.1
    • /
    • pp.20-29
    • /
    • 2018
  • Background: For various reasons such as agricultural and economical purposes, land-use changes are rapidly increasing not only in Korea but also in the world, leading to shifts in the characteristics of local carbon cycle. Therefore, in order to understand the large-scale ecosystem carbon cycle, it is necessary first to understand vegetation on this local scale. As a result, it is essential to comprehend change of the carbon balance attributed by the land-use changes. In this study, we attempt to understand accumulated soil carbon (ASC) and soil respiration (Rs) related to carbon cycle in two ecosystems, artificially turned forest into pastureland from forest and a native deciduous temperate forest, resulted from different land-use in the same area. Results: Rs were shown typical seasonal changes in the alpine pastureland (AP) and temperate deciduous forest (TDF). The annual average Rs was $160.5mg\;CO_2\;m^{-2}h^{-1}$ in the AP, but it was $405.1mg\;CO_2\;m^{-2}h^{-1}$ in the TDF, indicating that the Rs in the AP was lower about 54% than that in the TDF. Also, ASC in the AP was $124.49Mg\;C\;ha^{-1}$ from litter layer to 30-cm soil depth. The ASC was about $88.9Mg\;C\;ha^{-1}$, and it was 71.5% of that of the AP. The temperature factors in the AP was high about $4^{\circ}C$ on average compared to the TDF. In AP, it was observed high amount of sunlight entering near the soil surface which is related to high soil temperature is due to low canopy structure. This tendency is due to the smaller emission of organic carbon that is accumulated in the soil, which means a higher ASC in the AP compared to the TDF. Conclusions: The artificial transformation of natural ecosystems into different ecosystems is proceeding widely in the world as well as Korea. The change in land-use type is caused to make the different characteristics of carbon cycle and storage in same region. For evaluating and predicting the carbon cycle in the vegetation modified by the human activity, it is necessary to understand the carbon cycle and storage characteristics of natural ecosystems and converted ecosystems. In this study, we studied the characteristics of ecosystem carbon cycle using different forms in the same region. The land-use changes from a TDF to AP leads to changes in dominant vegetation. Removal of canopy increased light and temperature conditions and slightly decreased SMC during the growing season. Also, land-use change led to an increase of ASC and decrease of Rs in AP. In terms of ecosystem carbon sequestration, AP showed a greater amount of carbon stored in the soil due to sustained supply of above-ground liters and lower degradation rate (soil respiration) than TDF in the high mountains. This shows that TDF and AP do not have much difference in terms of storage and circulation of carbon because the amount of carbon in the forest biomass is stored in the soil in the AP.

Comparison of Three Kinds of Methods on Estimation of Forest Carbon Stocks Distribution Using National Forest Inventory DB and Forest Type Map (국가산림자원조사 DB와 임상도를 이용한 산림탄소저장량 공간분포 추정방법 비교)

  • Kim, Kyoung-Min;Roh, Young-Hee;Kim, Eun-Sook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.69-85
    • /
    • 2014
  • Carbon stocks of NFI plots can be accurately estimated using field survey information. However, an accurate estimation of carbon stocks in other unsurveyed sites is very difficult. In order to fill this gap, various spatial information can be used as an ancillary data. In South Korea, there is the 1:5,000 forest type map that was produced by digital air-photo interpretation and field survey. Because this map contains very detailed forest information, it can be used as the high-quality spatial data for estimating carbon stocks. In this study, we compared three upscaling methods based on the 1:5,000 forest type map and 5th national forest inventory data. Map algebra(method 1), RK(Regression Kriging)(method 2), and GWR(Geographically Weighted Regression)(method 3) were applied to estimate forest carbon stock in Chungcheong-nam Do and Daejeon metropolitan city. The range of carbon stocks from method 2(1.39~138.80 tonC/ha) and method 3(1.28~149.98 tonC/ha) were more similar to that of previous method(1.56~156.40 tonC/ha) than that of method 1(0.00~93.37 tonC/ha). This result shows that RK and GWR considering spatial autocorrelation can show spatial heterogeneity of carbon stocks. We carried out paired t-test for carbon stock data using 186 sample points to assess estimation accuracy. As a result, the average carbon stocks of method 2 and field survey method were not significantly different at p=0.05 using paired t-test. And the result of method 2 showed the lowest RMSE. Therefore regression kriging method is useful to consider spatial variations of carbon stocks distribution in rugged terrain and complex forest stand.

An Identification of Project Sites for Lowering Carbon Emissions and Saving Forests in DPR Korea (북한의 탄소저감과 산림보존을 위한 사업대상지 선정방법 연구)

  • Kim, Oh Seok;Youn, Yeo-Chang
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.2
    • /
    • pp.264-274
    • /
    • 2014
  • The main purpose of the current research is to analyze DPR Korean carbon emissions due to forest loss and to identify potential project sites for REDD implementation. REDD (Reducing Emissions from Deforestation and forest Degradation) is a global environmental policy that is geared towards lowering carbon emissions in developing and least developed countries through saving forests that are vulnerable to future deforestation. DPR Korea is known for its underdevelopment as well as its serious environmental degradation, but limited research exists regarding these issues. The research employs remotely sensed global data and forest carbon stock information from the existing literature to quantify carbon emissions in DPR Korea. It turns out that the country may have had emitted about 82.6 to 149.3 $MtCO_2e$ due to forest loss between 2005 and 2009. A few administrative districts are delineated as prospective REDD sites, of which the outcomes of Local Moran's I represent high rates of deforestation. In brief, it appears there is a great possibility to lower carbon emissions in DPR Korea via REDD implementation.

  • PDF

Assessment of Carbon Emission for Quantification of Environmental Load on Structural Glued Laminated Timber in Korea (국산 구조용 집성재의 환경부하 정량화를 위한 온실가스 배출량 분석)

  • Chang, Yoon-Seong;Kim, Sejong;Son, Whi-Lim;Lee, Sang-Joon;Shim, Kug-Bo;Yeo, Hwanmyeong;Kim, Kwang-Mo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.449-456
    • /
    • 2016
  • This study was aimed to quantify the amount of carbon dioxide emissions and to suggest suitable plans which consider the carbon emission reduction in the manufacturing process of the domestic structural glued laminated timber. Field investigation on two glued laminated timber manufacturers was conducted to find out material flow input values such as raw materials, transportation, manufacturing process, and energy consumption during manufacturing process. Based on the collected data and the relevant literatures about life cycle inventory (LCI), the amount of carbon dioxide emission per unit volume was quantified. Results show that the carbon dioxide emissions for sawing, drying and laminating process are 31.0, 109.0, 94.2 kg $CO_2eq./m^3$, respectively. These results show 13% lesser amount of total carbon dioxide emissions compared with the imported glued laminated timber in Korea. Furthermore, it was decreased about 37% when the fossil fuel would be replaced with biomass fuel in drying process. Findings from this study is effectively used as the basic data on the life cycle assessment of wooden building.

Development of Carbon Neutral Indicator Using Capacity of Carbon Storage on Urban Forest (도시 산림의 탄소저장능을 활용한 탄소중립지표 개발)

  • Lee, Jung-Hwan;Lee, Gwan-Gyu;Hong, Jeong-Kee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.3
    • /
    • pp.94-102
    • /
    • 2010
  • Carbon Neutral is one of the magnifying pan-governmental tasks which aim for stabilizing pan-global ecosystem. The purpose of this study is to estimates carbon neutral degree in cities by using capacity of carbon storage, which is carbon sinks, on forest and to develop an indicator that could be utilized in establishing policy related to climate change respond. When the carbon emitted from city has been absorbed or stored, the value of the indicator aiming to achieve carbon neutral could be drawn. The result and implication are as follows. First, while the annual amount of carbon emission in Gyeonggi S city was 18,787 thousand (tons), which was the highest, that of Gyeongbuk U city indicated the lowest with approximately 112 thousand (tons). Second, Gyeongbuk U city represented the largest capacity of annual carbon storage with about 16,748 thousand (tons), whereas the smallest figure was shown in Gyeonggi B city with 151 thousand (tons). Third, as result of the estimation of carbon neutral degree, the value of the indicator in Gyeonggi B city was 3% referring the lowest point, while that of other cities demonstrated over 100%. Forth, it has the possibility to suggest the fixed quantity when the plan for achieving carbon neutral of city is being processed. In the near future, after the completion of the construction projects of greenhouse gas inventory in all local governments, by utilizing the relative dates, the value of the indicator can be calculated and a more general conclusion could be drawn. Moreover, as expanding case studies to all domestic cities, generalness is in need.

Site Characteristics and Carbon Dynamics of the Gwangneung Deciduous Natural Forest in Korea

  • Lim, Jong-Hwan;Shin, Joon-Hwan;Kim, Choonsig;Oh, Jeong-Soo
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.163-163
    • /
    • 2003
  • The study area, Kwangneung Experiment Forest (KEF) is located on the west-central portion of Korean peninsula and belongs to a cool-temperate broadleaved forest zone. At the old-growth deciduous forest near Soribong-peak (533.1m) in KEF, we have established a permanent plot and a flux tower, and the site was registered as a KLTER site and also a KoFlux site. In this study, we aimed to present basic ecological characteristics and synthetic data of carbon budgets and flows, and some monitoring data which are essential for providing important parameters and validation data for the forest dynamics models or biogeochemical dynamics models to predict or interpolate spatially the changes in forest ecosystem structure and function. We made a stemmap of trees in 1 ha plot and analyzed forest stand structure and physical and chemical soil characteristics, and estimated carbon budgets by forest components (tree biomass, soils, litter and so on). Dominant tree species were Quercus serrata and Carpinus laxiflora, and accompanied by Q. aliena, Carpinus cordata, and so on. As a result of a field survey of the plot, density of the trees larger than 2cm in DBH was 1,473 trees per ha, total biomass 261.2 tons/ha, and basal area 28.0 m2/ha. Parent rock type is granite gneiss. Soil type is brown forest soil (alfisols in USDA system), and the depth is from 38 to 66cm. Soil texture is loam or sandy loam, and its pH was from 4.2 to 5.0 in the surface layer, and from 4.8 to 5.2 in the subsurface layer. Seasonal changes in LAI were measured by hemispherical photography at the l.2m height, and the maximum was 3.65. And the spatial distributions of volumetric soil moisture contents and LAIs of the plot were measured. Litterfall was collected in circular littertraps (collecting area: 0.25m2) and mass loss rates and nutrient release patterns in decomposing litter were estimated using the litterbag technique employing 30cm30cm nylon bags with l.5mm mesh size. Total annual litterfall was 5,627 kg/ha/year and leaf litter accounted for 61% of the litterfall. The leaf litter quantity was highest in Quercus serrata, followed by Carpinus laxiflora and C. cordata, etc. Mass loss from decomposing leaf litter was more rapid in C. laxiflora and C. cordata than in Q. serrata litter. About 77% of C. laxiflora and 84% of C. cordata litter disappeared, while about 48% in Q. serrata litter lost over two years. The carbon pool in living tree biomass including below ground biomass was 136 tons C/ha, and 5.6 tons C/ha is stored in the litter layer, and about 92.0 tons C/ha in the soil to the 30cm in depth. Totally more than about 233.6 tons C/ha was stored in DK site. And then we have drawn a schematic diagram of carbon budgets and flows in each compartment of the KEF site.

  • PDF