References
- Anselin, L. and A.K. Bera. 1998. Spatial dependence in linear regression models with an introduction to spatial econometrics. In: A. Ullah and D. Giles (ed). Handbook of Applied Economic Statistics. CRC Press, New York, pp.237-289.
- Blackyard, J.A., M.V. Finco, E.H. Helmer, G.R. Holden, M.L. Hoppus, D.M. Jacobs, A.J. Lister, G.G. Moisen, M.D. Nelson, R. Riemann, B. Ruefenacht, D. Salajanu, D.L. Weyermann, K.C. Winterberger, T.J. Brandeis, R.L. Czaplewski, R.E. McRoberts, P.L. Patterson and P.P. Tymcio. 2008. Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information. Remote Sensing of Environment 112:1658-1677. https://doi.org/10.1016/j.rse.2007.08.021
- Brown, S. and G. Gaston. 1995. Use of forest inventories and geographic information systems to estimate biomass density of tropical forests: application to tropical africa. Environmental Monitoring and Assessment 38:157-168.
- Fournier, R.A., J.E. Luther, L. Guindon, M.C. Lambert, D. Piercey, R.J. Hall and M.A. Wulder. 2003. Mapping aboveground tree biomass at the stand level from inventory information: test cases in Newfoundland and Quebec. Canadian Journal of Forest Research 33(10):1846-1863. https://doi.org/10.1139/x03-099
- Fotheringham, A.S., C. Brunsdon and M. Charlton. 2002. Geographically Weighted Regression. Wiley, 284pp.
- Freeman, E. and G. Moisen. 2006. Evaluating kriging as a tool to improve moderate resolution maps of forest biomass. Environmental Monitoring and Assessment 128(1-3):395-410.
- Gjertsen, A.K. 2007. Accuracy of forest mapping based on Landsat TM data and a k-NN based method. Remote Sensing of Environment 110:420-430. https://doi.org/10.1016/j.rse.2006.08.018
- Hengl, T., G. Heuvelink and A. Stein. 2004. A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma 122(1-2): 75-93.
- Huiyan, G., D. Limin, W. Gang, X. Dong, W. Shunzhong and W. Hui. 2006. Estimation of forest volumes by integrating landsat TM imagery and forest inventory data. Science in China: Series E Technological Sciences 49:54-62. https://doi.org/10.1007/s11431-006-8107-z
- IPCC. 2003. Good practice guidance for land use, land-use change and forestry, Kanagawa, Institute for Global Environment Strategies(IGES). 576pp.
- Jung, J.H., J. Heo, S.H. Yoo, K.M. Kim and J.B. Lee. 2010. Estimation of aboveground biomass carbon stock in Danyang area using kNN algorithm and landsat TM seasonal satellite images. Korean Society for Geospatial Information System 18(4):119-129 (정재훈, 허준, 유수홍, 김경민, 이정빈. 2010. kNN 알고리즘과 계절별 Landsat TM 위성영상을 이용한 단양군 지역의 지상부 바이오매스 탄소저장량 추정. 한국지형공간정보학회지 18(4): 119-129).
- Kim, E.S., K.M. Kim, J.B. Lee, S.H. Lee and J.C. Kim. 2011. Spatial upscaling of aboveground biomass estimation using national forest inventory data and forest type map. Journal of Korean Forest Society 100(3):505-515 (김은숙, 김경민, 이정빈, 이승호, 김종찬. 2011. 국가산림 자원조사 자료와 임상도를 이용한 지상부 바이오매스의 공간규모 확장. 한국임학회지 100(3):505-515).
- Kim, Y.J. and H.K. Kim. 2007. Environmental Statistics. Dong Hwa, 256pp (김영주, 김희갑. 2007. 환경통계학. 동화기술, 256쪽)
- Korea Forest Research Institute. 2009. 5th National Forest Inventory Manual Ver. 1.3. 54pp (국립산림과학원. 2009. 제 5차 국가산림자원조사 요령 ver 1.3. 54쪽).
- Korea Forest Research Institute. 2010. Study on the basis of forest carbon accounting in Korea. Korea Forest service. 436pp (국립산림과학원. 2010. 교토의정서 대응 산림탄소계정 기반 구축 연구. 산림청. 436쪽).
- Korea Forest Service. 2001. Forestry Dictionary. 1341pp (산림청. 2001. 임업 및 임학 사전. 1341쪽).
- Korea Forest Service. 2009. Climate Change and Forest. 244pp (산림청. 2009. 기후변화와 산림. 244쪽).
- Korea Forest Service. 2011. Statistical yearbook of forestry. 484pp (산림청. 2011. 임업통계연보. 484쪽).
- Kohl, M., S.S. Magnussen and M. Marchetti. 2006. Sampling Methods, Remote Sensing and GIS Multiresource Forest Inventory. Springer. 373pp.
- Labrecque, S., R.A. Fournier, J.E. Luther and D. Piercey. 2006. A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland. Forest Ecology and Management 226:129-144. https://doi.org/10.1016/j.foreco.2006.01.030
- Lufafa, A., I. Diedhiou, S. Samba, M. Sene, M. Khouma, F. Kizito, R. Dick, E. Dossa and J. Noller. 2008. Carbon stocks and patterns in native shrub communities of Senegal's Peanut basin. Geoderma 146 (1-2):75-82. https://doi.org/10.1016/j.geoderma.2008.05.024
- Magnussen, S., R.E. McRoberts and E.O. Tomppo. 2009. Model-based mean square error estimators for k-nearest neighbour predictions and applications using remotely sensed data for forest inventories. Remote Sensing of Environment 113:476-488. https://doi.org/10.1016/j.rse.2008.04.018
- McRoberts, R.E. and E.O. Tomppo, E. 2007. Remote sensing support for national forest inventories. Remote Sensing of Environment 110:412-419. https://doi.org/10.1016/j.rse.2006.09.034
- Meng, Q., C. Cieszewski and M. Madden. 2009. Large area forest inventory using Landsat ETM+: a geostatistical approach. ISPRS Journal of Photogrammetry and Remote Sensing 64:27-36. https://doi.org/10.1016/j.isprsjprs.2008.06.006
- Moran, P. 1948. The interpretation of statistical maps. Journal of Royal Statistical Society 10:243-251.
- Nijland, W., E.A. Addink, S.M. De Jong and F.D. Van der Meer. 2009. Optimizing spatial image support for quantitative mapping of natural vegetation. Remote Sensing of Envrionment 113: 771-780. https://doi.org/10.1016/j.rse.2008.12.002
- Park, H.J., H.S. Shin, Y.H. Roh, K.M. Kim and K.H. Park. 2012. Estimating forest carbon stocks in Danyang using kriging methods for aboveground biomass. Journal of the Korean Association of Geographic Information Studies 15(1): 16-33 (박현주, 신휴석, 노영희, 김경민, 박기호. 2012. 크리깅 기법을 이용한 단양군의 산림탄소저장량 추정 -지상부 바이오매스를 대상으로-. 한국지리정보학회지 15(1):16-33). https://doi.org/10.11108/kagis.2012.15.1.016
- Rahman, M.M., E. Csaplovics and B. Koch. 2008. Satellite estimation of forest carbon using regression models. International Journal of Remote Sensing 29(23):6917-6936. https://doi.org/10.1080/01431160802144187
- Reese, H., M. Nilsson, P. Sandstro and H. Olson. 2002. Application using estimates of forest parameters derived from satellite and forest inventory data. Computers and Electronics in Agriculture 37:37-55. https://doi.org/10.1016/S0168-1699(02)00118-7
- Sales, M., C. Souza Jr, P. Kyriakidis, D. Roberts and E. Vidal. 2007. Improving spatial distribution estimation of forest biomass with geostatistics: a case study for Rondonia, Brazil. Ecological Modelling 205(1-2):221-230. https://doi.org/10.1016/j.ecolmodel.2007.02.033
- Tomppo, E., H. Olsson, G. Stahl, M. Nilsson, O. Hagner and M. Katila. 2008. Combining national forest inventory field plots and remote sensing data for forest databases. Remote Sensing of Environment 112:1982-1999. https://doi.org/10.1016/j.rse.2007.03.032
- Tomppo, E., M. Nilsson, M. Rosengren, P. Aalto and P. Kennedy. 2002. Simultaneous use of Landsat-TM and IRS-1C wifs data in estimating large area tree stem volume and aboveground biomass. Remote Sensing of Environment 82:156-171. https://doi.org/10.1016/S0034-4257(02)00031-7
- Tomppo, E. and M. Siitonen. 1991. The national forest inventory of finland. Paper and Timber 73(2):90−97.
- Wulder, M.A., J.C. White, R.A. Fournier, J.E. Luther and S. Magnussen. 2008. Spatially explicit large area biomass estimation: three approaches using forest inventory and remotely sensed imagery in a GIS. Sensors 8:529-560. https://doi.org/10.3390/s8010529
- Yim, J.S., W.S. Han, J.H. Hwang, S.Y. Chung, H.K. Cho and M.Y. Shin. 2009. Estimation of forest biomass based upon satellite data and national forest inventory data. Korean Journal of Remote Sensing 25(4):311-320 (임종수, 한원성, 황주호, 정상영, 조현국, 신만용. 2009. 위성영상자료 및 국가 산림자원조사 자료를 이용한 산림 바이오매스 추정. 대한원격탐사학회지 25(4):311-320). https://doi.org/10.7780/kjrs.2009.25.4.311
- Zhuang, Q., T. Zhang and J. Xiao. 2009. Quantification of net primary production of Chinese forest ecosystems with spatial statistical approaches. Mitig Adapt Strateg Glob Change 14:85-99. https://doi.org/10.1007/s11027-008-9152-7
Cited by
- Change Analysis of Aboveground Forest Carbon Stocks According to the Land Cover Change Using Multi-Temporal Landsat TM Images and Machine Learning Algorithms vol.18, pp.4, 2015, https://doi.org/10.11108/kagis.2015.18.4.081
- Comparison of Forest Carbon Stocks Estimation Methods Using Forest Type Map and Landsat TM Satellite Imagery vol.31, pp.5, 2015, https://doi.org/10.7780/kjrs.2015.31.5.9
- Brief history of Korean national forest inventory and academic usage vol.43, pp.3, 2016, https://doi.org/10.7744/kjoas.20160032
- Estimation of Forest Volumes in the Ecosystem Region Using Spatial Statistical Techniques vol.18, pp.2, 2015, https://doi.org/10.11108/kagis.2015.18.2.149
- 산림의 CO2 흡수량 평가를 위한 통계 및 공간자료의 활용성 검토 - 안산시를 대상으로 - vol.27, pp.2, 2014, https://doi.org/10.14249/eia.2018.27.2.124
- 환경공간정보를 활용한 도시녹지의 탄소흡수량 추정 -안산시를 대상으로- vol.21, pp.3, 2014, https://doi.org/10.13087/kosert.2018.21.3.13
- Development of Forest Activity Data and Forest Management Rate for National Greenhouse Gas Inventory in the Forest Sector vol.11, pp.1, 2020, https://doi.org/10.15531/ksccr.2020.11.1.53
- Spatial and Temporal Patterns of Forest Management Activities from 1990 to 2019 to Demonstrate Additionality for Climate Change Mitigation in the Forest Sector of South Korea vol.12, pp.8, 2014, https://doi.org/10.3390/f12081003