• Title/Summary/Keyword: carbon fiber tube (CFT)

Search Result 11, Processing Time 0.024 seconds

Flexural Strength Design Equation of Concrete Filled Steel Tube(CFT) Column Reinforced by Carbon Fiber Sheet (탄소섬유쉬트로 보강한 콘크리트 충전강관(CFT) 기둥의 휨내력식)

  • Park, Jai-Woo;Hong, Young-Kyun;Hong, Gi-Soup
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.29-36
    • /
    • 2008
  • The TR-CFT(Transversely Reinforced Concrete Filled Steel Tube) column is proposed to control or at least delay the state of local buckling at the critical section by wrapping the CFT columns with a carbon fiber sheet. In this study, an equation to determine the flexural strength of TR-CFT is proposed. The ACI-318 code, in which the contribution of the confining effect in the concrete filled steel tube is not appropriately accounted for, may be conservative. Therefore, flexural strength design equations for CFT columns and TR-CFT columns are proposed based on the concrete strain-stress curve, which contributes to the confining effect. Finally, the predicted results for the CFT and TR-CFT columns are shown to be in good agreement with actual test results.

The Experimental Study on Axial Loaded Concrete Filled Steel Tube Confined by Carbon Fiber Sheet (탄소섬유쉬트로 구속된 콘크리트충전 각형강관기둥의 단조압축실험)

  • Park, Jai Woo;Hong, Young Kyun;Hong, Gi Soup;Lee, Seoung Hee;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.311-320
    • /
    • 2009
  • This paper presents the experimental results of an experiment on the current rectangular CFT columns and rectangular CFT columns additionally confined by carbon fiber sheets(CFS) under axial loading. The main experimental parameters were the layer numbers of the CFS and the depth-to-thickness ratio. Nine specimens were prepared according to the experimental parameter plans, and axial compression tests were conducted. From the tests, the failure procedure, the load-axial deformation curve, the maximum axial strength, and the deformation capacity of the CFT columns and the confined CFT columns were compared. Finally, it was seen that the maximum axial strengths of the CFT increased more significantly than that of the current CFT columns because of delayed local buckling.

Behaviors of concrete filled square steel tubes confined by carbon fiber sheets (CFS) under compression and cyclic loads

  • Park, Jai Woo;Hong, Young Kyun;Choi, Sung Mo
    • Steel and Composite Structures
    • /
    • v.10 no.2
    • /
    • pp.187-205
    • /
    • 2010
  • The existing CFT columns present the deterioration in confining effect after the yield of steel tube, local buckling and the deterioration in load capacity. If lateral load such as earthquake load is applied to CFT columns, strong shearing force and moment are generated at the lower part of the columns and local buckling appears at the column. In this study, axial compression test and beam-column test were conducted for existing CFT square column specimens and those reinforced with carbon fiber sheets (CFS). The variables for axial compression test were width-thickness ratio and the number of CFS layers and those for beamcolumn test were concrete strength and the number of CFS layers. The results of the compression test showed that local buckling was delayed and maximum load capacity improved slightly as the number of layers increased. The specimens' ductility capacity improved due to the additional confinement by carbon fiber sheets which delayed local buckling. In the beam-column test, maximum load capacity improved slightly as the number of CFS layers increased. However, ductility capacity improved greatly as the increased number of CFS layers delayed the local buckling at the lower part of the columns. It was observed that the CFT structure reinforced with carbon fiber sheets controlled the local buckling at columns and thus improved seismic performance. Consequently, it was deduced that the confinement of CFT columns by carbon fiber sheets suggested in this study would be widely used for reinforcing CFT columns.

Flexural strength of high-strength concrete filled steel tube columns strengthened by carbon fiber sheets (탄소섬유쉬트로 보강한 고강도 콘크리트 충전강관(CFT) 기둥의 휨내력에 관한 연구)

  • Park, Jai-Woo;Hong, Young-Kyun;Hong, Gi-Soup
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.21-28
    • /
    • 2008
  • The CFT (Concrete Filled Steel Tube) columns became popular in high rise building construction due to not only its composite effect but also economic advantage. However, it has been pointed out in various previous researches that the current practice in CFT columns may lead the steel tube to probable local buckling at critical sections of the columns right after yielding. To resolve such a problem, the TR-CFT (Transversely Reinforced Concrete Filled Steel Tube) column is proposed to control or at least delay the local buckling state at the critical section by wrapping the CFT columns with carbon fiber sheet. The validity of the proposed column system is validated through the present paper by observing the experimental performance and comparing it with the analytical prediction of the TR-CFT columns with hish strength concrete. It is also shown that the current design code provisions such as ACI-318, in which the contribution of concrete confining effect filled in steel tube is not appropriately accounted for, may contain too much conservatism.

Experimental Study on Flexural Capacity of Circular Concrete Beam Confined by Carbon Fiber Tubes (탄소섬유관으로 구속된 무근 원형 보의 휨성능에 관한 실험적 연구)

  • Lee, Kyoung-Hun;Hong, Won-Kee;Lee, Young-Hak;Kim, Hee-Cheul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.1 s.53
    • /
    • pp.37-43
    • /
    • 2007
  • Experiments for circular unreinforced concrete beams confined by carbon fiber tubes (CFT) made of carbon fiber sheets were performed. Selected test parameter was thickness of carbon fiber tube: 1.5mm (3 layers), 2.0mm (4 layers), 2.5mm (5 layers), and 3.0mm (6 layers). Based on the test results, an equation for estimating moment capacity of the circular beams confined by carbon fiber tubes was proposed. Comparison results showed good agreement up to 2.5mm (5 sheets) of the CFT thickness.

Ductility Capacity for Concrete Filled Steel Circular Tubes Reinforced by Carbon Fiber Sheets(CFSs) (탄소섬유쉬트로 보강된 콘크리트충전 원형강관기둥의 연성능력)

  • Park, Jai-Woo;Hong, Young-Kyun;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.185-195
    • /
    • 2010
  • This paper presents the experiment results for a CFT column confined by carbon fiber sheets(CFSs) under an axial load. Nine specimens were constructed and axial compression tests were conducted. The main experiment parameters were diameter-thickness ratio(D/t), reinforcing CFSa, and the attachment of a cushion gap between surface of steel tube and CFSs. The load-displacement curves of the specimens were obtained from the compression tests. Finally, it was concluded that the CFT column with a gap had grater ductility capacity improvement that the CFT column confined by CFSs.

Axial impact behavior of confined concrete filled square steel tubes using fiber reinforced polymer

  • Zhang, Yitian;Shan, Bo;Kang, Thomas H.K.;Xiao, Yan
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.165-176
    • /
    • 2021
  • Existing research on confined concrete filled steel tubular (CCFT) columns has been mainly focused on static or cyclic loading. In this paper, square section CCFT and CFT columns were tested under both static and impact loading, using a 10,000 kN capacity compression test machine and a drop weight testing equipment. Research parameters included bonded and unbonded fiber reinforced polymer (FRP) wraps, with carbon, basalt and glass FRPs (or CFRP, BFRP, and GFRP), respectively. Time history curves for impact force and steel strain observed are discussed in detail. Experimental results show that the failure modes of specimens under impact testing were characterized by local buckling of the steel tube and cracking at the corners, for both CCFT and CFT columns, similar to those under static loading. For both static and impact loading, the FRP wraps could improve the behavior and increase the loading capacity. To analyze the dynamic behavior of the composite columns, a finite element, FE, model was established in LS-DYNA. A simplified method that is compared favorably with test results is also proposed to predict the impact load capacity of square CCFT columns.

An Experimental Study on TR-CFT Columns subjected to Axial Force and Cyclic Lateral Loads (축력과 반복수평력을 받는 TR-CFT기둥에 관한 실험적 연구)

  • Park, Jai Woo;Kim, Jin Ho;Hong, Young Kyun;Hong, Gi Soup
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.4
    • /
    • pp.403-411
    • /
    • 2007
  • CFT (Concrete filled steel tube) column has become popular for building construction due to not only its composite effect but also economic effect. However, the conventional CFT column also has its own disadvantages having plastic buckling at the end of column followed by the reduction of strength by yielding of steel tube. An experiment on TR-CFT (Transversely reinforced CFT) column are conducted for making up for conventional CFT column's disadvantages. The experiment parameters are strength of concrete, the layer numbers of carbon fiber sheet. In this study, hysteretic curve, initial stiffness, strength, plastic deformation capacity, and dissipated energy are compared and analyzed between CFT and TR-CFT columns.

Experimental Study on Concrete Steel Circular Tubes Confined by Carbon Fiber Sheet under Axial Compression Loads (탄소섬유쉬트로 구속된 콘크리트충전 원형강관기둥의 단조압축실험)

  • Park, Jai-Woo;Hong, Young-Kyun;Hong, Gi-Soup;Choi, Sung-Mo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.5
    • /
    • pp.61-71
    • /
    • 2009
  • This paper presents the results of an experiment comparing the current circular CFT columns and circular CFT columns that were additionally confined by carbon fiber sheets (CFS) under axial loading. The main experimental parameters are the numbers of CFS layers and the diameter-to-thickness ratio. 10 specimens were prepared according to the experimental parameter plans, and axial compression tests were conducted. From the tests, the failure procedure, load-axial deformation curve, maximum axial strength, and deformation capacity of the CFT columns and confined CFT columns were compared. The test results showed that the maximum axial strengths of CFT columns additionally confined by CFS are increased higher than those of the current CFT columns, and that local buckling can be delayed due to the confinement effect of CFS.

The Experiment and Design Formula of Rectangular CFT Columns Reinforced by Carbon Fiber Sheets (탄소섬유쉬트로 보강된 각형 CFT기둥의 실험 및 설계식)

  • Park, Jai-Woo;Chung, Sung-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.4024-4030
    • /
    • 2010
  • Axial load tests and cyclic load tests for FRP reinforced rectangular CFT columns were carried out The main parameters were width-thickness ratio of a steel tubeand FRP layer numbers for the axial load tests and were concrete strength and FRP layer numbers for cyclic load tests. The maximum strength and ductility capacity were compared between the current CFT columns and the FRP reinforced CFT columns. Finally, the axial design formulas were presented for the FRP reinforced CFT columns.