• 제목/요약/키워드: carbon fiber reinforced polymer-steel interface

검색결과 4건 처리시간 0.01초

Creation of regression analysis for estimation of carbon fiber reinforced polymer-steel bond strength

  • Xiaomei Sun;Xiaolei Dong;Weiling Teng;Lili Wang;Ebrahim Hassankhani
    • Steel and Composite Structures
    • /
    • 제51권5호
    • /
    • pp.509-527
    • /
    • 2024
  • Bonding carbon fiber-reinforced polymer (CFRP) laminates have been extensively employed in the restoration of steel constructions. In addition to the mechanical properties of the CFRP, the bond strength (PU) between the CFRP and steel is often important in the eventual strengthened performance. Nonetheless, the bond behavior of the CFRP-steel (CS) interface is exceedingly complicated, with multiple failure causes, giving the PU challenging to forecast, and the CFRP-enhanced steel structure is unsteady. In just this case, appropriate methods were established by hybridized Random Forests (RF) and support vector regression (SVR) approaches on assembled CS single-shear experiment data to foresee the PU of CS, in which a recently established optimization algorithm named Aquila optimizer (AO) was used to tune the RF and SVR hyperparameters. In summary, the practical novelty of the article lies in its development of a reliable and efficient method for predicting bond strength at the CS interface, which has significant implications for structural rehabilitation, design optimization, risk mitigation, cost savings, and decision support in engineering practice. Moreover, the Fourier Amplitude Sensitivity Test was performed to depict each parameter's impact on the target. The order of parameter importance was tc> Lc > EA > tA > Ec > bc > fc > fA from largest to smallest by 0.9345 > 0.8562 > 0.79354 > 0.7289 > 0.6531 > 0.5718 > 0.4307 > 0.3657. In three training, testing, and all data phases, the superiority of AO - RF with respect to AO - SVR and MARS was obvious. In the training stage, the values of R2 and VAF were slightly similar with a tiny superiority of AO - RF compared to AO - SVR with R2 equal to 0.9977 and VAF equal to 99.772, but large differences with results of MARS.

보수.보강 철근콘크리트 보의 휨 성능 (Flexural Performance of Strenghtened RC Beams After Repair)

  • 김병국;신영수;홍기섭;이차돈;최완철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.355-360
    • /
    • 1995
  • A series of 15 reinforced concrete beams was tested to evaluate the flexural performance of the repaired RC beams. the key parameters for this study were the repair materials, polymer/cementitious materials, in addition to the strengthening material, steel plates and carbon fiber sheets. The repaired specimens failed by a typical flexural mode. showing minor interface failure. The results show that epoxy, polyester resins and latex modified cementitous mortars are effective for repairing the concrete beams. However, the flexural preformance of the strengthened beams are varied depending on the repaired materal.

  • PDF

Ductility of carbon fiber-reinforced polymer (CFRP) strengthened reinforced concrete beams: Experimental investigation

  • Kim, Sang Hun;Aboutaha, Riyad S.
    • Steel and Composite Structures
    • /
    • 제4권5호
    • /
    • pp.333-353
    • /
    • 2004
  • Strength of reinforced concrete beams can easily be increased by the use of externally bonded CFRP composites. However, the mode of failure of CFRP strengthened beam is usually brittle due to tension-shear failure in the concrete substrate or bond failure near the CFRP-Concrete interface. In order to improve the ductility of CFRP strengthened concrete beams, critical variables need to be investigated. This experimental and analytical research focused on a series of reinforced concrete beams strengthened with CFRP composites to enhance the flexural capacity and ductility. The main variables were the amount of CFRP composites, the amount of longitudinal and shear reinforcement, and the effect of CFRP end diagonal anchorage system. Sixteen full-scale beams were investigated. A new design guideline was proposed according to the effects of the above-mentioned variables. The experimental and analytical results were found to be in good agreement.

Stereo-digital image correlation in the behavior investigation of CFRP-steel composite members

  • Dai, Yun-Tong;Wang, Hai-Tao;Ge, Tian-Yuan;Wu, Gang;Wan, Jian-Xiao;Cao, Shuang-Yin;Yang, Fu-Jun;He, Xiao-Yuan
    • Steel and Composite Structures
    • /
    • 제23권6호
    • /
    • pp.727-736
    • /
    • 2017
  • The application of carbon fiber reinforced polymer (CFRP) in steel structures primarily includes two categories, i.e., the bond-critical application and the contact-critical application. Debonding failure and buckling failure are the main failure modes for these two applications. Conventional electrometric techniques may not provide precise results because of the limitations associated with single-point contact measurements. A nondestructive full-field measurement technique is a valuable alternative to conventional methods. In this study, the digital image correlation (DIC) technique was adopted to investigate the bond behavior and buckling behavior of CFRP-steel composite members. The CFRP-to-steel bonded joint and the CFRP-strengthened square hollow section (SHS) steel column were tested to verify the suitability of the DIC technique. The stereo-DIC technique was utilized to measure continuous deformation. The bond-slip relationship of the CFRP-to-steel interface was derived using the DIC data. Additionally, a multi-camera DIC system consisting of four stereo-DIC subsystems was proposed and applied to the compressive test of CFRP-strengthened SHS steel column. The precise buckling location and CFRP delamination of the CFRP-strengthened SHS steel column were identified. The experimental results confirm that the stereo-DIC technique can provide effective measurements for investigating the behaviors of CFRP-steel composite members.