• 제목/요약/키워드: carbon fiber reinforced composite, CFRP

검색결과 331건 처리시간 0.022초

흡수에 따른 탄소섬유 강화수지의 파괴거동 (Fracture Behavior for Carbon Fiber Reinforced Plastic by Immersion)

  • 김옥균;남기우;안병현
    • 수산해양기술연구
    • /
    • 제32권4호
    • /
    • pp.402-410
    • /
    • 1996
  • Recently carbon fiber reinforced plastic(CFRP) has been used structural materials in corrosive environment such as for water, chemical tank and chemical pipes. However, mechanical properties of such materials may change when CFRP are exposed to corrosive environment for long periods of time. Therefore, it is important to understand the effect of moisture absorption on mechanical properties of the CFRP. In this study, degradation behavior of immersed carbon fiber/epoxy resin composite material was investigated using acoustic emission(AE) technique. Fracture toughness test are performed on the compact tension(CT) test specimens that are pilled by two types of laminates $[0^{\circ}_2$/$90^{\circ}_2]_3s$ and $[0^{\circ}_2$/$90^{\circ}_2]_6s$During the fracture toughness test, AE test was carried out to monitor the damage of CFRP by moisture absorption. In spite of the change of moisture absorption rate, the fracture toughness of CFRP was not change. As immersion time increased, AE event count numbers decreased in low amplitude range of AE for amplitude distribution histogram. The event in low amplitude range was known to be generated by debonding of matrix-fiber interface. Therefore, decrease of AE event count numbers in low amplitude range represents that debonding of matrix-fiber interface which was probably generated by moisture absorption.

  • PDF

Structural behavior of CFRP strengthened concrete-filled steel tubes columns under axial compression loads

  • Park, Jai Woo;Choi, Sung Mo
    • Steel and Composite Structures
    • /
    • 제14권5호
    • /
    • pp.453-472
    • /
    • 2013
  • This paper presents the structural behavior of CFRP (carbon fiber reinforced polymer) strengthened CFT (concrete-filled steel tubes) columns under axial loads. Circular and square specimens were selected to investigate the retrofitting effects of CFRP sheet on CFT columns. Test parameters are cross section of CFT, D/t (B/t) ratios, and the number of CFRP layers. The load and ductility capacities were evaluated for each specimen. Structural behavior comparisons of circular and rectangular section will be represented in the experimental result discussion section. Finally, ultimate load formula of CFRP strengthened CFT will be proposed to calculate the ultimate strength of CFRP strengthened circular CFT. The prediction values are in good agreement with the test results obtained in this study and in the literature.

Carbon/Epoxy 적층판의 저속충격손상에 따른 잔류강도 평가 (Evaluation of Residual Strength of Carbon/Epoxy Laminates Due to Low Velocity Impact Damage)

  • 강민성;최정훈;김상영;구재민;석창성
    • 한국정밀공학회지
    • /
    • 제27권2호
    • /
    • pp.102-108
    • /
    • 2010
  • Recently, carbon fiber reinforced plastic(CFRP) composite materials have been widely used in various fields of engineering because of its advanced properties. Also, CFRP composite materials offer new design flexibilities, corrosion and wear resistance, low thermal conductivity and increased fatigue life. However CFRP composite materials are susceptible to impact damage due to their lack of through-thickness reinforcement and it causes large drops in the load-carrying capacity of a structure. Therefore, the impact damage behavior and subsequently load-carrying capacity of impacted composite materials deserve careful investigation. In this study, the residual strength and impact characteristics of plain-woven CFRP composites with impact damage are investigated under axial tensile test. By using obtained residual strength and Tan-Cheng failure criterion, residual strength of CFRP laminate with arbitrary fiber angle were evaluated.

Axial impact behavior of confined concrete filled square steel tubes using fiber reinforced polymer

  • Zhang, Yitian;Shan, Bo;Kang, Thomas H.K.;Xiao, Yan
    • Steel and Composite Structures
    • /
    • 제38권2호
    • /
    • pp.165-176
    • /
    • 2021
  • Existing research on confined concrete filled steel tubular (CCFT) columns has been mainly focused on static or cyclic loading. In this paper, square section CCFT and CFT columns were tested under both static and impact loading, using a 10,000 kN capacity compression test machine and a drop weight testing equipment. Research parameters included bonded and unbonded fiber reinforced polymer (FRP) wraps, with carbon, basalt and glass FRPs (or CFRP, BFRP, and GFRP), respectively. Time history curves for impact force and steel strain observed are discussed in detail. Experimental results show that the failure modes of specimens under impact testing were characterized by local buckling of the steel tube and cracking at the corners, for both CCFT and CFT columns, similar to those under static loading. For both static and impact loading, the FRP wraps could improve the behavior and increase the loading capacity. To analyze the dynamic behavior of the composite columns, a finite element, FE, model was established in LS-DYNA. A simplified method that is compared favorably with test results is also proposed to predict the impact load capacity of square CCFT columns.

낙뢰손상방지를 위한 전도성 나노입자 코팅에 의한 탄소섬유 복합재료의 전기전도도 향상 연구 (Improved Electrical Conductivity of CFRP by Conductive Nano-Particles Coating for lightning Strike Protection)

  • 하민석;권오양;최흥섭
    • Composites Research
    • /
    • 제23권1호
    • /
    • pp.31-36
    • /
    • 2010
  • 본 연구는 탄소섬유강화플라스틱(CFRP) 복합재료로 제작된 항공기 등 구조물의 낙뢰에 의한 손상을 방지하기 위하여 전도성 은나노입자를 탄소섬유에 코팅한 후 에폭시 수지로 함침함으로써 CFRP의 전기전도도를 향상시키는 방법에 대한 것이다. 전기전도도 측정은 4점측정법을 통해 저항값을 측정하고 이를 전기전도도 값으로 변환하였으며, 나노입자 코팅 상태와 전기전도도의 변화를 관찰하였다. 또한 SEM과 EDS를 통해 탄소섬유 표면에 코팅된 은나노입자의 존재와 전기적 네트워크가 형성된 것을 확인하였다. 결과로써 일반 CFRP의 약 3배 이상의 전기전도도를 얻을 수 있었다.

평판의 1차 고유진동수가 최대가 되는 점지지의 최적위치선정에 관한 연구 (A Study on the Optimal Position Determination of Point Supports to Maximize Fundamental Natural Frequency of Plate)

  • 홍도관;김문경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권7호
    • /
    • pp.1165-1171
    • /
    • 2004
  • The free vibration analyses of the isotropic and CFRP laminated composite rectangular plates with point supports at the fix edge is performed by FEM. We showed optimal position and mode shape of point supports that maximized fundamental natural frequency of the isotropic and CFRP laminated composite rectangular plates by each aspect ratio and the number of point supports.

드릴에 의한 탄소섬유강화플라스틱의 절삭특성에 관한 연구 (A Study on the Cutting Characteristics of the Carbon Fiber Reinforced Plastics by Drill Tools)

  • 박종남;정성택;김선진;조규재
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.279-282
    • /
    • 2002
  • With the development of industrial society, the interest of new material is growing even in machining center. Composite materials in the new materials are superior to the metals In measure stability of strength, modulus and heat, moreover when mould is prepared, it can be done net shape manufacturing so it can be used widely in all sorts of machine parts, interior materials of car structural construct ions, the space aerial industry, ship materials, sports goods and so on. Therefore in this study, the property of processing drill on CFRP in composite materials by experimental study and some problems were examined.

  • PDF

Analysis of Time-Dependent Deformation of CFRP Considering the Anisotropy of Moisture Diffusion

  • Arao, Yoshihiko;Koyanagi, Jun;Hatta, Hiroshi;Kawada, Hiroyuki
    • Advanced Composite Materials
    • /
    • 제17권4호
    • /
    • pp.359-372
    • /
    • 2008
  • The moisture absorption behavior of carbon fiber-reinforced plastic (CFRP) and its effect on dimensional stability were examined. Moisture diffusivity in CFRP was determined by measuring a specimen's weight during the moisture absorption test. Three types of CFRP specimens were prepared: a unidirectionally reinforced laminate, a quasi-isotropic laminate and woven fabric. Each CFRP was processed into two geometries - a thin plate for determination of diffusivity and a rod with a square cross-section for the discussion of two-dimensional diffusion behavior. By solving Fick's law expanded to 3 dimensions, the diffusivities in the three orthogonal directions were obtained and analyzed in terms of the anisotropy of CFRP moisture diffusion. Coefficients of moisture expansion (CMEs) were also obtained from specimen deformation caused by moisture absorption. During moisture absorption, the specimen surfaces showed larger deformation near the edges due to the distribution of moisture contents. This deformation was reasonably predicted by the finite element analysis using experimentally determined diffusivities and CMEs. For unidirectional CFRP, the effect of the fiber alignment on CME was analyzed by micromechanical finite element analysis (FEA) and discussed.

Ductility of carbon fiber-reinforced polymer (CFRP) strengthened reinforced concrete beams: Experimental investigation

  • Kim, Sang Hun;Aboutaha, Riyad S.
    • Steel and Composite Structures
    • /
    • 제4권5호
    • /
    • pp.333-353
    • /
    • 2004
  • Strength of reinforced concrete beams can easily be increased by the use of externally bonded CFRP composites. However, the mode of failure of CFRP strengthened beam is usually brittle due to tension-shear failure in the concrete substrate or bond failure near the CFRP-Concrete interface. In order to improve the ductility of CFRP strengthened concrete beams, critical variables need to be investigated. This experimental and analytical research focused on a series of reinforced concrete beams strengthened with CFRP composites to enhance the flexural capacity and ductility. The main variables were the amount of CFRP composites, the amount of longitudinal and shear reinforcement, and the effect of CFRP end diagonal anchorage system. Sixteen full-scale beams were investigated. A new design guideline was proposed according to the effects of the above-mentioned variables. The experimental and analytical results were found to be in good agreement.

다양한 형상비를 갖는 사각 CFRP 튜브의 굽힘 및 비틀림 특성 (Bending and Torsional Characteristics of Rectangular CFRP Tubes with Various Aspect Ratios)

  • 이용성;정성균
    • Composites Research
    • /
    • 제27권2호
    • /
    • pp.37-41
    • /
    • 2014
  • 섬유강화복합재료는 비강도와 비강성이 뛰어나 여러 분야에 걸쳐 사용량이 증가하고 있으며 자전거와 같은 스포츠 용품에도 사용량이 점점 증가하고 있다. 복합재료는 다양한 형상의 구조부품으로 만들어져 사용되고 있다. 특히 자전거 프레임의 일부에는 사각형 복합재 튜브 형태로 제작되어 사용되고 있으나 이에 관한 연구는 많지 않다. 사각 복합재 튜브의 경우에 모서리에 적절한 라운드 값을 주어 굽힘과 비틀림에 견디도록 설계된다. 본 연구에서는 모서리의 곡률반경이 R5, R10, R15인 세 개의 그룹에 가로-세로 1:1, 1:1.5, 1:2의 형상비를 갖는 아홉 종류의 사각 복합재 튜브를 제작하였다. 탄소섬유강화복합재료가 튜브제작에 사용되었으며 단면적은 모두 같도록 설계되었다. $[0/90/{\pm}45]s$으로 적층하여 제작한 사각 복합재 튜브에 굽힘과 비틀림 하중을 가하여 실험평가를 수행하였다. 실험결과 사각 복합재 튜브의 R 값과 형상비에 따라서 굽힘 및 비틀림 특성이 크게 다름을 알 수 있었다.