• Title/Summary/Keyword: carbon dioxide gas production

Search Result 202, Processing Time 0.03 seconds

Effect of Carbon dioxide in Fuel on the Performance of PEM Fuel Cell (연료중의 이산화탄소 불순물에 의한 연료전지 성능변화 연구)

  • Seo, Jung-Geun;Kwon, Jung-Taek;Kim, Jun-Bom
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.184-187
    • /
    • 2007
  • Hydrogen could be produced from any substance containing hydrogen atoms, such as water, hydrocarbon (HC) fuels, acids or bases. Hydrocarbon fuels couold be converted to hydrogen-rich gas through reforming process for hydrogen production. Even though fuel cell have high efficiency with pure hydrogen from gas tank, it is more beneficial to generate hydrogen from city gas (mainly methane) in residential application such as domestic or office environments. Thus hydrogen is generated by reforming process using hydrocarbon. Unfortunately, the reforming process for hydrogen production is accompanied with unavoidable impurities. Impurities such as CO, $CO_2$, $H_2S$, $NH_3$, and $CH_4$ in hydrogen could cause negative effects on fuel cell performance. Those effects are kinetic losses due to poisoning of electrode catalysts, ohmic losses due to proton conductivity reduction including membrane and catalyst ionomer layers, and mass transport losses due to degrading catalyst layer structure and hydrophobic property. Hydrogen produced from reformer eventually contains around 73% of $H_2$, 20% or less of $CO_2$, 5.8% of less of $N_2$, or 2% less of $CH_4$, and 10ppm or less of CO. Most impurities are removed using pressure swing adsorption (PSA) process to get high purity hydrogen. However, high purity hydrogen production requires high operation cost of reforming process. The effect of carbon dioxide on fuel cell performance was investigated in this experiment. The performance of PEM fuel cell was investigated using current vs. potential experiment, long run (10 hr) test, and electrochemical impedance measurement when the concentrations of carbon dioxide were 10%, 20% and 30%. Also, the concentration of impurity supplied to the fuel cell was verified by gas chromatography (GC).

  • PDF

An Experimental Study on Anaerobic Acidogenesis Product Distributions (혐기성 산생성상에 있어서 온도 및 pH조건에 따른 생성물질의 분포상태)

  • Ahn, Ho-Hyeoug;Kim, Dong-Min
    • Journal of environmental and Sanitary engineering
    • /
    • v.4 no.2 s.7
    • /
    • pp.91-99
    • /
    • 1989
  • An anaerobic acidogenic fermentation experiment was carried out in order to investigate the distribution of volatile acid products and gas generations with varing temperatures and pH values. The experiment was carried out using $1\%$ glucose as substrate and a pair of 3.5 liter vessle as bench scale batch reactors. The reactors were operated for 7 days at 25, 30 and $35^{\circ}C$ and at pH values of 4.0, 4.5, 5.0, 5.5 and 6.0 at each temperature conditions. Major products at all experiment pH's at $35^{\circ}C$ were acetic acids and butyric acids which together composed around $90^{\circ}F$ of total product acids. At higher pH values at $35^{\circ}C$, propionic acid reached around $10\%$. At all experiment conditions, 52 to $55\%$ of generated gases comprised of hydrogen gas and 45 to $48\%$ of carbon dioxide. With temperature increase from 25 to $35^{\circ}C$, the production rate of acetic acid increased 2.9 fold, butyric acid 22 fold, hydrogen gas 2.0 fold and carbon dioxide gas 2.3 fold. Optimum reaction conditions for highest production of acetic acid and hydrogen gas was determined to be pH 5.5 at $35^{\circ}C$.

  • PDF

Gas Hydrate (가스 하이드레이트)

  • Ryu Byong-Jae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.609-614
    • /
    • 2005
  • Gas hydrates are ice-l ike sol id compounds that are composed of water and natural gas. All common gas hydrates belong to the three crystal structures that are composed of five polyhedral cavities formed by hydrogen bonded water molecules and stable in specific high pressure and low temperature conditions. Gas hydrates contain large amounts of organic carbon and widely occur in deep oceans and permafrost regions, and they may therefore represent a potential energy resource in the future. United States and Japan perform the national R&D programs for the commercial production of gas hydrates in 2010's. The study on gas hydrates are also important for exploration and development of natural gas in the regions where gas hydrates are accumulated and could be formed. Although their global abundance is debated, they play an important role in global climate change since methane is a 50 times more effect ive greenhouse gas than carbon dioxide. Natural gas hydrates also form a possible natural hazard if rapidly dissociated and can cause slides and slumps and in the marine environment associated tsunamis.

  • PDF

Experimental study on capture of carbon dioxide and production of sodium bicarbonate from sodium hydroxide

  • Shim, Jae-Goo;Lee, Dong Woog;Lee, Ji Hyun;Kwak, No-Sang
    • Environmental Engineering Research
    • /
    • v.21 no.3
    • /
    • pp.297-303
    • /
    • 2016
  • Global warming due to greenhouse gases is an issue of great concern today. Fossil fuel power plants, especially coal-fired thermal power plants, are a major source of carbon dioxide emission. In this work, carbon capture and utilization using sodium hydroxide was studied experimentally. Application for flue gas of a coal-fired power plant is considered. Carbon dioxide, reacting with an aqueous solution of sodium hydroxide, could be converted to sodium bicarbonate ($NaHCO_3$). A bench-scale unit of a reactor system was designed for this experiment. The capture scale of the reactor system was 2 kg of carbon dioxide per day. The detailed operational condition could be determined. The purity of produced sodium bicarbonate was above 97% and the absorption rate of $CO_2$ was above 95% through the experiment using this reactor system. The results obtained in this experiment contain useful information for the construction and operation of a commercial-scale plant. Through this experiment, the possibility of carbon capture for coal power plants using sodium hydroxide could be confirmed.

Geomechanical assessment of reservoir and caprock in CO2 storage: A coupled THM simulation

  • Taghizadeh, Roohollah;Goshtasbi, Kamran;Manshad, Abbas Khaksar;Ahangari, Kaveh
    • Advances in Energy Research
    • /
    • v.6 no.1
    • /
    • pp.75-90
    • /
    • 2019
  • Anthropogenic greenhouse gas emissions are rising rapidly despite efforts to curb release of such gases. One long term potential solution to offset these destructive emissions is the capture and storage of carbon dioxide. Partially depleted hydrocarbon reservoirs are attractive targets for permanent carbon dioxide disposal due to proven storage capacity and seal integrity, existing infrastructure. Optimum well completion design in depleted reservoirs requires understanding of prominent geomechanics issues with regard to rock-fluid interaction effects. Geomechanics plays a crucial role in the selection, design and operation of a storage facility and can improve the engineering performance, maintain safety and minimize environmental impact. In this paper, an integrated geomechanics workflow to evaluate reservoir caprock integrity is presented. This method integrates a reservoir simulation that typically computes variation in the reservoir pressure and temperature with geomechanical simulation which calculates variation in stresses. Coupling between these simulation modules is performed iteratively which in each simulation cycle, time dependent reservoir pressure and temperature obtained from three dimensional compositional reservoir models in ECLIPSE were transferred into finite element reservoir geomechanical models in ABAQUS and new porosity and permeability are obtained using volumetric strains for the next analysis step. Finally, efficiency of this approach is demonstrated through a case study of oil production and subsequent carbon storage in an oil reservoir. The methodology and overall workflow presented in this paper are expected to assist engineers with geomechanical assessments for reservoir optimum production and gas injection design for both natural gas and carbon dioxide storage in depleted reservoirs.

A Study on the Fixed amount of CO2 and the estimation of production on CaCO3 of Waste Concrete Powder using the Ca(OH)2 (Ca(OH)2를 이용한 폐콘크리트 미분말의 CO2 고정량 및 CaCO3 생성량 추정에 관한 연구)

  • Ahn, Hee-Sung;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.117-118
    • /
    • 2011
  • South Korea is a ninth greenhouse gas emission nation in the world(2007) and is certainly to perform a duty to conduct reduction role by the Kyoto Protocol in 2013. waste concrete produced in the country is 45 million tons per year and these two issues are being came to the fore as major problems of society. However, if it utilizes wet carbonation system carbon using carbon dioxide and waste concrete as raw material it can expect effect of environmental protection and resource recycling. Furthermore, it can exploit another industry production.

  • PDF

Enhanced Production of Succinic Acid by Actinobacillus succinogenes using the Production Medium Supplemented with Recombinant Carbonic Anhydrases (재조합 탄산무수화 효소 첨가 생산배지를 이용한 Actinobacillus succinogenes 유래의 숙신산 생산성 향상)

  • Park, Sang-Min;Eum, Kyuri;Kim, Sangyong;Jeong, Yong-Seob;Lee, Dohoon;Chun, Gie-Taek
    • KSBB Journal
    • /
    • v.29 no.3
    • /
    • pp.155-164
    • /
    • 2014
  • Succinic acid, a representative biomass-derived platform chemical, is a major fermentation product of Actinobacillus succinogenes. It is well known that carbon dioxide is consumed during the succinate fermentation, but the biochemical mechanism behind this phenomenon is not yet understood well. In this study, it was found that the addition of carbonic anhydrase (CA)s into media significantly enhances the succinic acid production by A. succinogenes during the fermentation supplied with carbon dioxide. It is likely that the (bi) carbonate produced by the CA activity from gaseous carbon dioxide is favoured by A. succinogenes for consumption and utilization. Therefore, the $MgCO_3$ requirement could be significantly reduced without compromising the succinate productivity. Furthermore, because of too high price of the commercial carbonic anhydrase, it was undertaken to economically overproduce a cyanobacterial carbonic anhydrase by the use of a recombinant Pichia pastoris. An expression vector system was constructed with the carbonic anhydrase gene PCR-cloned from Cyanobacterium Synechocystis sp., and introduced into P. pastoris for fermentation studies. About 95.9 g/L of succinic acid was produced in the production medium with 30 ppm of carbonic anhydrase, approximately 2 fold higher productivity compared to the parallel process with no supplementation of the enzyme. It is expected that this method can provide a valuable way of overcoming inefficiencies inherent in gas supply during $CO_2$-based bioprocesses like succinic acid fermentation.

Flame Extinguishing Concentrations and Flue Gas Compositions of n-Heptane by Mixed Inert Gas Agents (불활성 가스계 혼합소화약제의 n-Heptane 불꽃소화농도 및 배가스 조성)

  • 김재덕;김영래;홍승태;이성철
    • Fire Science and Engineering
    • /
    • v.16 no.3
    • /
    • pp.77-83
    • /
    • 2002
  • We measured flame extinguishing concentration and flue gas composition in the n-heptane fuel cup-burner system using inert gas agents such as nitrogen, argon, carbon dioxide and their mixtures. The flame extinguishing concentration of binary gaseous mixture was well predicted by model which contains the flame extinguishing concentration and composition of pure components. The higher average specific gravity of the mixed inert gas agents, the more excellent flame extinguishing performance. And the structure of enclosed space also affects the fire extinguishing. The composition of carbon dioxide in the flue gas was decreased with increasing extinguishing agent used. Nitrogen monoxide production is not related with increasing nitrogen, but increased at rapid mass flow rate of air in the cup-burner.

Impacts of Elevated $CO_2$ on Algal Growth, $CH_4$ Oxidation and $N_2O$ Production in Northern Peatland (이탄습지에서 이산화탄소의 농도가 조류의 증식, 메탄 산화 및 아산화질소 생성에 미치는 영향)

  • Freeman, Chris;Kang, Ho-Jeong
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.4 s.96
    • /
    • pp.261-266
    • /
    • 2001
  • Effects of elevated carbon dioxide ($CO_2$) on soil microbial processes were studied in a northern peatland. Intact peat cores with surface vegetation were collected from a northern Welsh fen, and incubated either under elevated carbon dioxide (700 ppm) or ambient carbon dioxide (350 ppm) conditions for 4 months. Higher algal biomass was found under the elevated $CO_2$ condition, suggesting $CO_2$ fertilization effect on primary production, At the end of the incubation, trace gas production and consumption were analyzed using chemical inhibitors. For methane ($CH_4$ ), methyl fluoride ($CH_3F$) was applied to determine methane oxidation rates, while acetylene ($C_2H_2$) blocking method were applied to determine nitrification and denitrification rates. First, we have adopted those methods to optimize the reaction conditions for the wetland samples. Secondly, the methods were applied to the samples incubated under two levels of $CO_2$. The results exhibited that elevated carbon dioxide increased both methane production (210 vs. $100\;ng\;CH_4 g^{-1}\;hr^{-1}$) and oxidation (128 vs. $15\;ng\;CH_4 g^{-1}\;hr^{-1}$), resulting in no net increase in methane flux. For nitrous oxide ($N_2O$) , elevated carbon dioxide enhanced nitrous oxide emission probably from activation of nitrification process rather than denitrification rates. All of these changes seemed to be substantially influenced by higher oxygen diffusion from enhanced algal productivity under elevated $CO_2$.

  • PDF

Effect of CA Storage Conditions on the Internal Breakdown of Fuji Apple Fruits under CA Storage (Fuji 사과의 CA저장중 저장조건이 과육갈변에 미치는 영향)

  • 이주백;최종욱
    • Food Science and Preservation
    • /
    • v.4 no.3
    • /
    • pp.227-235
    • /
    • 1997
  • The internal breakdown of Fuji apple during CA storage classified as watercore breakdown, low temperature breakdown and CO2 injury. This study was undertaken to investigate the watercore breakdown injury factors of Korean Fuji apple during CA storage. The development of internal breakdown was more increased with the larger size, the later harvest time and the hither CO2 gas level. But in internal breakdown fruit of the titratable acidity and soluble solid decreased significantly, the pH of fruit juice and the production of carbon dioxide was greatly increased. The best gas levels of CA storage was 2% oxygen and 3% carbon dioxide. Thus, the predictable parameters of internal breakdown of fruit were increase in pH on decrease titratable acidity within 2 months of CA storage, increase carbon dioxide. So, it was found that the best CA sotrage for internal breakdown control of fruit during CA storage was delayed CA storage methods after low temperature storage immediate harvest of apple and than took a step. The delayed CA storage after low temperature storage for 2 months was more effective in the prevention of development of internal breakdown than immediate CA storage after harvest.

  • PDF