• Title/Summary/Keyword: carbon carbon composites

Search Result 2,135, Processing Time 0.025 seconds

Design and Analysis of Composite Reflector of High Stable Deployable Antenna for Satellite (위성용 전개형 고안정 반사판 안테나 복합재 주반사판 설계 및 해석)

  • Dong-Geon Kim;Kyung-Rae Koo;Hyun-Guk Kim;Sung-Chan Song;Seong-Cheol Kwon;Jae-Hyuk Lim;Young-Bae Kim
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.230-240
    • /
    • 2023
  • The deployable reflector antenna consists of 24 unit main reflectors, and is mounted on a launch vehicle in a folded state. This satellite reaches the operating orbit and the antenna of satellite is deployed, and performs a mission. The deployable reflector antenna has the advantage of reduce the storage volume of payload of launch vehicle, allowing large space structures to be mounted in the limited storage space of the launch vehicle. In this paper, structural analysis was performed on the main reflector constituting the deployable reflector antenna, and through this, the initial conceptual design was performed. Lightweight composite main reflector was designed by applying a carbon fiber composite and honeycomb core. The laminate pattern and shape were selected as design variables and a design that satisfies the operation conditions was derived. Then, the performance of the lightweight composite reflector antenna was analyzed by performing detailed structural analysis on modal analysis, quasi-static, thermal gradient, and dynamic behavior.

Effect of Acrylonitrile-Butadiene Rubber on the Properties of Silica-Filled Styrene-Butadiene Rubber Compounds: Reduction of Silane Coupling Agent and Diphenylguanidine (실리카로 보강된 SBR 배합물의 특성에 미치는 NBR 효과: 실란커플링제와 DPG의 사용량 감소)

  • Choi, Sung-Seen;Chang, Dong-Ho;Kim, Ik-Sik
    • Elastomers and Composites
    • /
    • v.37 no.4
    • /
    • pp.217-223
    • /
    • 2002
  • Silica-filled rubber compounds show poor filler dispersion and slow cure characteristics compared to carbon black-filled ones. In general, a silica-filled rubber compound contains silane coupling agent (bis-(3-(triethoxysilyl)-propyl)-tetrasulfide, TESPT) and diphenylguanidine (DPG) to improve the filler dispersion and to make fast cure characteristics. Acrylonitrile-butadiene rubber (NBR) improves the filler dispersion in silica-filled styrene-butadiene rubber (SBR) compounds. In this study, effect of NBR on the properties of silica-filled SBR compounds was investigated. Properties of the compounds which contain NBR without DPG or with small amount of TESPT (Compound A) were compared with those of the compounds which contain TESPT and DPG without NBR (Compound B). Scorch time of Compound A is faster than those of Compound B. Modulus and tensile strength of Comound A are slightly lower than those of Compound B. Traction property of the Comound A is better than that of the Compound B. Addition of NBR leads to reduction of the used amount of TESPT and DPG.

Influence of Blending Method on the Generation of Wear Particulate Matters and Physical Properties in TBR Tire Tread Compounds

  • Sanghoon Song;Junhwan Jeong;Jin Uk Ha;Daedong Park;Gyeongchan Ryu;Donghyuk Kim;Kiwon Hwang;Sungwook Chung;Wonho Kim
    • Elastomers and Composites
    • /
    • v.58 no.4
    • /
    • pp.161-172
    • /
    • 2023
  • Because particulate matter has emerged as a major contributor to air pollution, the tire industry has conducted studies to reduce particulate matters from tires by improving tire performance. In this study, we compared the conventional blending method, in which rubber, filler, and additives are mixed simultaneously, to the Y-blending method, in which masterbatches are blended. We manufactured carbon black (CB)-filled natural rubber (NR)/butadiene rubber (BR) blend and silica-filled epoxidized NR/BR blend compounds to compare the effects of the two blending methods on the physical properties of the compounds and the amount of particulate matter generated. The Y-blending method provided uniform filler distribution in the heterogeneous rubber matrix, improved processability, and exhibited low rolling resistance. This method also improved physical properties owing to the excellent filler-rubber interaction. The results obtained from measuring the generation of particulate matter indicated that, the Y-blending method reduced PM2.5 particulate matter generation from the CB-filled and silica-filled compounds by 38% and 60%, and that of PM10 by 29% and 67%, respectively. This confirmed the excellence of the Y-blending method regarding the physical properties of truck bus radial tire tread compounds and reduced particulate matter generated.

Wear Behavior of Silica filled Styrene-Butadiene Rubber: A Comparative Study Between the Blade-Type and Akron-Type Abrader

  • Gi-Bbeum Lee;Dongwon Kim;Seowon Lee;Seonhong Kim;Myung-Su Ahn;Bismark Mensah;Changwoon Nah
    • Elastomers and Composites
    • /
    • v.58 no.4
    • /
    • pp.179-190
    • /
    • 2023
  • The effect of the particle size and silica structure on the wear behavior of Silica/Styrene-Butadiene Rubber (SBR) compounds was investigated using a blade-type abrader and the findings were compared with those obtained with an Akron abrader. The compensated characteristic parameter (Ψc), which was the contributory factor of the combined effect of the particle size and filler structure, was introduced. This parameter was found to exhibit a linear relationship with the Young's modulus. The Young's modulus correlated more with Ψc than the uncompensated characteristic parameter (Ψ) modeled for carbon black. The wear rate and volume loss measured using a blade-type abrader and Akron abrader were respectively observed to be inversely proportional to Ψc, that is, the wear resistance of Silica/SBR compound improved as the particle size became smaller and the silica structure became intricate. The coefficient of determination (R2) obtained from the linear relationship between Ψc and wear rate was higher than those between Ψc and volume loss for the Silica/SBR compound. Thus, the blade-type abrader exhibited high potential to be used for accurately evaluating the effect of particle size and structural properties of silica on the wear behavior of SBR compounds.

Effect of Functionalized BR Content on the Wear Particulate Matters and Physical Properties in TBR Tire Tread Compounds

  • Junhwan Jeong;Sanghoon Song;Jin Uk Ha;Daedong Park;Jaeyun Kim;Yeongmin Jung;Donghyuk Kim;Kiwon Hwang;Sungwook Chung;Wonho Kim
    • Elastomers and Composites
    • /
    • v.59 no.2
    • /
    • pp.64-72
    • /
    • 2024
  • As air pollution continues to increase owing to increasing traffic centered in urban areas, the tire industry is researching methods to reduce particulate matter. In this study, functionalized lithium butadiene rubber (F-LiBR) was applied to a natural rubber (NR)/butadiene rubber (BR) blend compound often used in truck bus radial (TBR) tire treads. The effect of the functional group that can react with carbon black (CB) in BR was investigated in terms of the dispersion of CB and the compound performance, including the generation of particulate matter. Compounds that were substituted with F-LiBR exhibited enhanced interaction with CB, resulting in excellent filler dispersion. Although F-LiBR exhibited lower crosslinking density and inferior abrasion resistance due to its high vinyl content, the compound with 30 phr of F-LiBR was advantageous in terms of its rolling resistance due to the excellent filler dispersion, which was also effective in reducing the amount of generated particulate matter (up to 56% reduction for PM2.5, and 67% reduction for PM10). The results confirmed the benefits of the introduction of functional groups into TBR tire tread compounds, which can aid in improving the fuel efficiency and reducing particulate matter generation.

Kirigami-inspired Composite Metastructure for Low-frequency Vibration Reduction (저주파 진동 저감을 위한 키리가미 구조 영감의 복합재료 메타구조)

  • Hyunsoo Hong;Samuel Kim;Wonvin Kim;Wonki Kim;Jae-moon Jeong;Seong Su Kim
    • Composites Research
    • /
    • v.37 no.4
    • /
    • pp.291-295
    • /
    • 2024
  • Vibration occurs not only in daily life but also in various fields such as semiconductors, aerospace, vehicles, and ships. Unexpected vibrations can cause fatigue damage to structures and degrade the performance of the entire system, having very detrimental effects. Particularly, low-frequency vibrations can be very harmful to precision equipment, human bodies, and buildings. Therefore, mitigating low-frequency vibrations is essential for effective vibration reduction. In this study, a kirigami-inspired composite meta-structure is proposed for low-frequency vibration reduction. Inspired by kirigami, the meta-structure is designed to transform from a three-dimensional to a two-dimensional form upon compression, leveraging structural advantages. Additionally, it is designed to have quasizero stiffness characteristics, providing excellent vibration reduction performance even at low frequencies. The kirigami composite meta-structure was fabricated using carbon fiber reinforced TPU through 3D printing. Its structural and vibrational characteristics were evaluated and analyzed through compression and vibration tests.

Combined Effects of Sustained Load and Temperature on Pull-off Strength and Creep Response between CFRP Sheet and Concrete Using Digital Image Processing (디지털 이미지 분석을 통한 지속 하중과 온도의 복합 환경이 CFRP 쉬트와 콘크리트의 부착강도 및 크리프 거동에 미치는 영향 분석)

  • Jeong, Yo-Seok;Lee, Jae-Ha;Kim, Woo-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.535-544
    • /
    • 2016
  • This paper aims at examining the effects of sustained load and elevated temperature on the time-dependent deformation of a carbon fiber reinforced polymer (CFRP) sheets bonded to concrete as well as the pull-off strength of single-lap shear specimens after the sustained loading period using digital images. Elevated temperature during the sustained loading period resulted in increased slip of the CFRP composites, whereas increased curing time of the polymer resin prior to the sustained loading period resulted in reduced slip. Pull-off tests conducted after sustained loading period showed that the presence of sustained load resulted in increased pull-off strength and interfacial fracture energy. This beneficial effect decreased with increased creep duration. Based on analysis of digital images, results on strain distributions and fracture surfaces indicated that stress relaxation of the epoxy occurred in the 30 mm closest to the loaded end of the CFRP composites during sustained loading, which increased the pull-off strength provided the failure locus remained mostly in the concrete. For longer sustained loading duration, the failure mode of concrete-CFRP bond region can change from a cohesive failure in the concrete to an interfacial failure along the concrete/epoxy interface, which diminished part of the strength increase due to the stress relaxation of the adhesive.

Effects of Solvent-Based Dilution Condition on CNT Dispersion in CNT/Epoxy Composites (용매를 이용한 에폭시 희석 조건이 CNT 에폭시 복합재료 내 CNT 분산도에 미치는 영향)

  • Kwon, Dong-Jun;Shin, Pyeong-Su;Kim, Jong-Hyun;Lee, Hyung-Ik;Park, Jong-Kyoo;Park, Joung-Man
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.125-131
    • /
    • 2016
  • In case of CNT mixing with epoxy, epoxy matrix needs to be diluted. This work studied the effect of the dilution condition of epoxy on CNT dispersion. The optimum solvent condition using acetone and DMF was found via mechanical and solubility methods which affects, the epoxy performance. The dispersion using acetone was better than the DMF and thus higher mechanical properties. Four mixing types of CNT particle were performed. To verify the effects of each step between dilution and dispersion, the dispersion between epoxy and CNT was evaluated via the electrical resistance and optical methods. The optimum dispersion was obtained via mechanical test and thermal analysis by DSC. Among four types, the best was to disperse CNT after epoxy and hardeners were diluted respectively.

Numerical Analysis of the Complex Permittivity of MWNT added Epoxy Depending on Agglomeration Size (에폭시 내부의 MWNT 응집 크기에 따른 복소유전율 변화의 해석적 관찰)

  • Shin, Jae-Hwan;Jang, Hong-Kyu;Choi, Won-Ho;Song, Tae-Hoon;Kim, Chun-Gon;Lee, Woo-Yong
    • Composites Research
    • /
    • v.27 no.5
    • /
    • pp.190-195
    • /
    • 2014
  • This paper predicts the complex permittivity of MWNT added epoxy depending on agglomeration by numerical analysis. 1wt% MWNT added epoxy specimen is prepared using 3-roll-mill method and its complex permittivity is measured in X-band (8.2~12.4 GHz) using freespace measurement system. The analytic model is comprised of cube epoxy and perfect sphere agglomeration. The complex permittivity of the agglomeration model is predicted by complex permittivity mixing rule using the measured complex permittivity of epoxy and 1 wt% MWNT added epoxy. Commercial electromagnetic analysis software, CST, is used to obtain S-parameter of the analytic model and MATLAB code is used to calculate complex permittivity from the S-parameter. It is confirmed that the complex permittivity increases when the agglomeration size decreases.

High Energy Density Germanium Anodes for Next Generation Lithium Ion Batteries (다음세대 리튬이온 배터리용 고에너지 밀도 게르마늄 음극)

  • Ocon, Joey D.;Lee, Jae Kwang;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.1-13
    • /
    • 2014
  • Lithium ion batteries (LIBs) are the state-of-the-art technology among electrochemical energy storage and conversion cells, and are still considered the most attractive class of battery in the future due to their high specific energy density, high efficiency, and long cycle life. Rapid development of power-hungry commercial electronics and large-scale energy storage applications (e.g. off-peak electrical energy storage), however, requires novel anode materials that have higher energy densities to replace conventional graphite electrodes. Germanium (Ge) and silicon (Si) are thought to be ideal prospect candidates for next generation LIB anodes due to their extremely high theoretical energy capacities. For instance, Ge offers relatively lower volume change during cycling, better Li insertion/extraction kinetics, and higher electronic conductivity than Si. In this focused review, we briefly describe the basic concepts of LIBs and then look at the characteristics of ideal anode materials that can provide greatly improved electrochemical performance, including high capacity, better cycling behavior, and rate capability. We then discuss how, in the future, Ge anode materials (Ge and Ge oxides, Ge-carbon composites, and other Ge-based composites) could increase the capacity of today's Li batteries. In recent years, considerable efforts have been made to fulfill the requirements of excellent anode materials, especially using these materials at the nanoscale. This article shall serve as a handy reference, as well as starting point, for future research related to high capacity LIB anodes, especially based on semiconductor Ge and Si.