• 제목/요약/키워드: carbon accumulation

검색결과 341건 처리시간 0.021초

Maximizing Biomass Productivity and $CO_2$ Biofixation of Microalga, Scenedesmus sp. by Using Sodium Hydroxide

  • Nayak, Manoranjan;Rath, Swagat S.;Thirunavoukkarasu, Manikkannan;Panda, Prasanna K.;Mishra, Barada K.;Mohanty, Rama C.
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권9호
    • /
    • pp.1260-1268
    • /
    • 2013
  • A series of experiments were carried out with three native strains of microalgae to measure growth rates, biomass, and lipid productivities. Scenedesmus sp. IMMTCC-6 had better biomass growth rate and higher lipid production. The growth, lipid accumulation, and carbon dioxide ($CO_2$) consumption rate of Scenedesmus sp. IMMTCC-6 were tested under different NaOH concentrations in modified BBM. The algal strain showed the maximum specific growth rate (0.474/day), biomass productivity (110.9 mg $l^{-1}d^{-1}$), and $CO_2$ consumption rate (208.4 mg $l^{-1}d^{-1}$) with an NaOH concentration of 0.005 M on the $8^{th}$ day of cultivation. These values were 2.03-, 6.89-, and 6.88-fold more than the algal cultures grown in control conditions (having no NaOH and $CO_2$). The $CO_2$ fixing efficiency of the microalga with other alternative carbon sources like $Na_2CO_3$ and $NaHCO_3$ was also investigated and compared. The optimized experimental parameters at shake-flask scale were implemented for scaling up the process in a self-engineered photobioreactor. A significant increase in lipid accumulation (14.23% to 31.74%) by the algal strain from the logarithmic to stationary phases was obtained. The algal lipids were mainly composed of $C_{16}/C_{18}$ fatty acids, and are desirable for biodiesel production. The study suggests that microalga Scenedesmus sp. IMMTCC-6 is an efficient strain for biodiesel production and $CO_2$ biofixation using stripping solution of NaOH in a cyclic process.

서태평양 적도 지역의 플라이스토세 후기 고해양 변화 (Late Pleistocene Paleoceanographic Changes of the West Equatorial Pacific)

  • 유찬민;형기성;문재운;김기현;지상범
    • Ocean and Polar Research
    • /
    • 제26권2호
    • /
    • pp.175-185
    • /
    • 2004
  • To delineate Late Pleistocene paleoceanographic change of the West Pacific, we analyzed the oxygen and carbon isotopic ratios of two planktonic foraminifera species (G. sacculifer and N. dutertrei) from a piston core (KODOS-313) taken from the West equatorial Pacific, and they are compared with the published results of the East Pacific (ODP site 847 and RC 11-210), in terms of relative amounts and mass accumulation rates of $CaCO_3$ and eolian component, back to marine isotopic stage (MIS) 6. Differences in oxygen and carbon isotope values between two foraminifear species ($0.75%_{\circ}$ in ${\delta}^{18}O$, $0.05%_{\circ}$ in ${\delta}^{13}C$) are less than those of the East Pacific ($1.30%_{\circ}$ in ${\delta}^{18}O$, $0.14%_{\circ}$ in ${\delta}^{13}C$), which indicates smaller vertical contrasts in both temperature and nutrient between mixing-zone and thermocline in the West Pacific. Strong deviation in${\delta}^{18}O$ of G. sacculifer from SPECMAP suggests the carbonate fraction of KODOS-313 was subjected to partial dissolution by bottom water under lysocline. Lower accumulation rates of $CaCO_3$ and eolian component during glacial times are likely due to low sedimentation rate (ave. 0.75 cm/1000 yr) combined with carbonate dissolution in KODOS-313 site. However, the high $CaCO_3$ contents during the glacial periods clearly follow the general pattern of equatorial Pacific ocean.

미생물에 의한 핵산관련물질의 생산에 관한 연구(제3보)-Bacillus subtilis의 영양요구변이주에 의한 Hypoxanthine의 축적- (Studies on Production of Nucleic Acid Derivatives by Microorganisms (III) -Accumulation of Hypoxanthine by Adenineless Mutant of Bacillus subtilis-)

  • 배무;윤애숙;이계준
    • 한국미생물·생명공학회지
    • /
    • 제1권1호
    • /
    • pp.13-18
    • /
    • 1973
  • Bacillus subtilis의 생균 및 포자액을 자외선 조사와 diethylsulfate 처리로서 adenine 요구변이주 총 62주를 분리하였다. 이들 변이주는 발효배지에 자외선흡수 물질을 축적하고 있음을 확인하였으며 이 축적물은 thin-layer chromatogram 자외선흡수 곡선등으로 hypozanthine, uracil 임을 동정하였다. 이 중에서 hypoxanthine만을 축적하는 변이주 BS-137의 배지성분을 검토한 결과 탄소원소로서는 glucose가 좋았으며 질소원으로서는 yeastext와 NaNO$_3$ 가 적당하였다. 아울러 배양액으로부터 hypoxanthine을 분리 정제하는 방법을 확립하였다.

  • PDF

MBR 반응조에서 아질산염 축적에 미치는 암모니아와 용존산소 농도의 영향 연구 (Influence of Ammonia and Dissolved Oxygen Concentrations on Nitrite Accumulation in a MBR)

  • 최인수;우도 비스만
    • 대한환경공학회지
    • /
    • 제29권8호
    • /
    • pp.922-929
    • /
    • 2007
  • 암모니아의 질산염으로의 산화는 2개의 산화과정으로 구분된다. 나이트로좀머나스(Nitrosomonas)에 의한 암모니아의 아질산염으로의 산화와 나이트로박터(Nitrobacter)에 의한 아질산염의 질산염으로의 산화이다. 아질산염 축적 과정을 거치는 질소의 제거는 포기를 위한 에너지의 절약, 탈질과정에서 투입되는 유기물의 절약 및 발생되는 슬러지의 양을 감소시킬 수 있는 다양한 장점들을 가지고 있다. 본 연구에서는 아질산염 축적의 조건들을 찾기 위해 막분리 장치를 장착한 생물분리막 반응조(MBR)가 사용되었다. 생물 분리막 반응조는 성장속도가 늦어 쉽게 유실되어질 수 있는 독립영양 질산화 박테리아를 반응조내 충분히 유지시키는데 중요한 역할을 한다. 반응조내 용존산소와 암모니아의 농도를 변화시키며 아질산염 축적의 영향인자들을 조사하였다. 연구의 결과로 반응조내 높은 암모니아 농도는 아질산염 축적을 시작하는데 매우 효과적이었으며, 이러한 효과는 반응조내 낮은 용존산소 농도가 동시에 존재할 시 더욱 강화되었다. 낮은 용존산소 농도 $c'_{O2}<0.3$ $mgL^{-1}$ $O_2$와 높은 암모니아 농도 $c_{NH3}=6.3\sim14.9$ $mgL^{-1}$ $NH_3N$에서 아질산염 축적율 74%에 달성될 수 있었다. 특히 아질산염 축적이 많은 연구자들이 제시하는 것처럼 생물막 반응조에서 뿐만 아니라, MBR 반응조에서도 일어날 수 있음을 밝힌 것은 본 연구의 중요한 성과라 할 것이다.

Rewiring carbon catabolite repression for microbial cell factory

  • Vinuselvi, Parisutham;Kim, Min-Kyung;Lee, Sung-Kuk;Ghim, Cheol-Min
    • BMB Reports
    • /
    • 제45권2호
    • /
    • pp.59-70
    • /
    • 2012
  • Carbon catabolite repression (CCR) is a key regulatory system found in most microorganisms that ensures preferential utilization of energy-efficient carbon sources. CCR helps microorganisms obtain a proper balance between their metabolic capacity and the maximum sugar uptake capability. It also constrains the deregulated utilization of a preferred cognate substrate, enabling microorganisms to survive and dominate in natural environments. On the other side of the same coin lies the tenacious bottleneck in microbial production of bioproducts that employs a combination of carbon sources in varied proportion, such as lignocellulose-derived sugar mixtures. Preferential sugar uptake combined with the transcriptional and/or enzymatic exclusion of less preferred sugars turns out one of the major barriers in increasing the yield and productivity of fermentation process. Accumulation of the unused substrate also complicates the downstream processes used to extract the desired product. To overcome this difficulty and to develop tailor-made strains for specific metabolic engineering goals, quantitative and systemic understanding of the molecular interaction map behind CCR is a prerequisite. Here we comparatively review the universal and strain-specific features of CCR circuitry and discuss the recent efforts in developing synthetic cell factories devoid of CCR particularly for lignocellulose-based biorefinery.

북동태평양 KODOS 해역의 유기탄소 및 겉보기산소량 특성 (Characteristics of Organic Carbon and Apparent Oxygen Utilization in the NE Pacific KODOS Area)

  • 손주원;손승규;김경홍;김기현;박용철;김동화;김태하
    • Ocean and Polar Research
    • /
    • 제27권1호
    • /
    • pp.1-13
    • /
    • 2005
  • The samples for organic carbon analysis were collected between $5^{\circ}\;and\;17^{\circ}N$ along $131.5^{\circ}W$ in the northeast Pacific KODOS (Korea Deep Ocean Study) area. The mean concentration of total organic carbon (TOC) in the surface mixed layer $({\sim}50 m)$ was $100.13{\pm}2.05{\mu}M-C$, while the mean concentration of TOC in the lower 500m of the water column was $50.19{\pm}4.23{\mu}M-C$. A strong linear regression between TOC and temperature $(r^2=0.70)$ showed that TOC distribution was controlled by physical process. Results from the linear regression between chlorophyll-a and TOC, and between chlorophyll-a and particulate organic carbon (POC), decreasing of dissolved organic carbon (DOC) in the surface layer caused by non-biological photo-oxidation process. Below the surface layer, biological production and consumption occurred. DOC accumulation dominated in the depth range of $30{\sim}50m$ and DOC consumption occurred in the depth range of $50{\sim}200m$. TOC was inversely correlated with apparent oxygen utilization (AOU) and TOC/AOU molar ratios ranged from -0.077 to -0.21. These ratios indicated that TOC oxidation was responsible fur $10.9{\sim}30.1%$ (mean 20.2%) of oxygen consumption in the NE Pacific KODOS area. In the euphotic zone, distributions of dissolved and particulate organic matter were controlled by photo-chemical, chemical, biological and physical processes.

고빈도 DO 및 수온 센서 자료를 이용한 대청호 생태계 신진대사 산정 (Estimation of Ecosystem Metabolism Using High-frequency DO and Water Temperature Sensor Data in Daecheong Lake)

  • 김성진;정세웅;박형석;오정국;박대연
    • 한국물환경학회지
    • /
    • 제34권6호
    • /
    • pp.579-590
    • /
    • 2018
  • The lakes' metabolism bears important information for the assessment of the carbon budget due to the accumulation or loss of carbon in the lake as well as the dynamics of the food webs through primary production. A lake-scale metabolism is evaluated by Gross Primary Production (GPP), Ecosystem Respiration (R), and Net Ecosystem Production (NEP), which is the difference between the first two values. Methods for estimating GPP and R are based on the levels carbon and oxygen. Estimation of carbon is expensive because of the use of radioactive materials which requires a high degree of proficiency. The purpose of this study was to estimate Lake Daecheong ecosystem metabolism using high frequency water temperature data and DO measurement sensor, widely utilized in the field of water quality monitoring, and to evaluate the possibility of using the application method. High frequency data was collected at intervals of 10 minutes from September to December 2017 by installing a thermistor chain and a DO sensor in downstream of Daechung Dam. The data was then used to estimate GPP, R and NEP using the R public program LakeMetabolizer, and other metabolism models (mle, ols, kalman, bookkeep). Calculations of gas exchange coefficient methods (cole, crusius, heiskanen, macIntyre, read, soloviev, vachon) were compared. According to the result, Lake Daecheong has some deviation based on the application method, but it was generally estimated that the NEP value is negative and acts as a source of atmospheric carbon in a heterotrophic system. Although the high frequency sensor data used in this study had negative and positive GPP and R values during the physical mixing process, they can be used to monitor real-time metabolic changes in the ecosystem if these problems are solved.

하계 완도 주변 육상 양식장 배출수 중 유기탄소 및 영양염의 분포 특성 (Distribution Characteristics of Organic Carbon and Nutrient in Effluent of Land-based Aquaculture Farms around Wando in Korea)

  • 김규리;최유정;김태훈
    • Ocean and Polar Research
    • /
    • 제45권3호
    • /
    • pp.103-111
    • /
    • 2023
  • To evaluate the impact of effluents from land-based fish farms on the coastal ocean of Wando, Korea, we analyzed inorganic nutrients, particulate organic carbon (POC), dissolved organic carbon (DOC), and colored dissolved organic matter (CDOM) in the effluent and influent of land-based fish farms during the summer (July) of 2021. The average concentrations of nutrients (Dissolved inorganic nitrogen, phosphorus, and silicate; DIN, DIP, and DSi, respectively) in the effluents of this study area were 17±3.7 μM, 1.4±0.7 μM, and 14±1.6 μM, respectively. The average concentrations of POC and DOC were 37±22 μM and 81±13 μM, respectively, with POC accounting for about 30% for total organic carbon in effluents. The Reduced Dissolved Inorganic Nitrogen/Total Dissolved Inorganic Nitrogen ratio (0.7), potential short-period index, indicates that the discharge of nutrients excreted by the fish and unconsumed feed into coastal water results in such nutrients being deposited and accumulated in the sediment. Subsequently, this continuous accumulation triggers the release of ammonium ions during organic matter decomposition, and the ammonium-enriched waters that encroach on fish farms as influent seem to be due to the diffusion of high concentrations of ammonium from bottom sediment. Furthermore, we used fluorescence indices to examine the characteristics of organic matter sources, obtaining mean values of 1.54±0.19, 1.06±0.06, and 1.56±0.06 for the humification index, biological index, and fluorescence index, respectively, in the effluent. These results indicate that the organic matters had an autochthonous origin that resulted from microbial decomposition, and such organic matters were rapidly generated and removed by biological activity, likely supplied from the sediment. Our results suggest that the effluent from land-based fish farms could be a potential source of deoxygenation occurrence in coastal areas.

미세조류 Botryococcus braunii의 배양조건 최적화 및 지질축적 향상 (Optimal Culturing and Enhancement of Lipid Accumulation in a Microalga Botryococcus braunii)

  • 권성현;이은미;조대철
    • 한국환경과학회지
    • /
    • 제21권7호
    • /
    • pp.779-785
    • /
    • 2012
  • Several tests and experimental work have been done for identifying the best growth conditions and accumulated amount of lipid moiety in B. braunii, a microalga(UTEX 572) in terms of media composition. The specific growth rate was found to be the highest at 0.15 g/L-day when the phosphorus concentration was doubled with the other ingredients at the normal level. Experiments for varied media compositions revealed that the accumulation of lipid was the highest at 48% (dry cell weight based) in the nitrogen deficient medium and its corresponding specific growth rate was comparative to that in the normal BG 11 medium. In the bubble column experiments, carbon dioxide containing air produced four times more cell mass than air only. Light and glucose addition also enhanced cell mass with maximum, 1.8 g/L and accordingly 42% of lipid composition, which turned out to be a better strategy for higher lipid-producing microalgal culture.

Isolation of Pseudomonas putida BM01 Accumulating High Amount of $PHA_{MCL}$

  • Song, Jae-Jun;Yoon, Sung-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • 제4권2호
    • /
    • pp.126-133
    • /
    • 1994
  • A Pseudomonas putida strain able to accumulate high amount of polyesters of medium-chain-length 3-hydroxyalkanoic acids ($PHA_{MCL)$) was isolated from soil in a landfill site using an enrichment technique. Culture condition of the isolated strain for polyester production in a one-step culture was optimized in a mineral-salts medium against pH and concentrations of ammonium sulfate, carbon source(e.g., octanoate), and phosphate. The optimal values for maximal cell growth and PHA accumulation were: pH; 7$\sim$8, $(NH_4)_2SO_4$; 8 mM, octanoate; 40 mM. The optimum temperature was in the range of $20\sim30^{\circ}C$, which was rather broader than in other bacteria. Cell growth was strongly inhibited by the phosphate limitation to less than 1 mM. An increase of phosphate concentration above 1 mM showed little effect on cell growth and polyester accumulation. When the strain was grown on octanoate under this optimized condition it produced 3.4 g dry biomass per liter and yielded 1.7 g PHA per liter amounting to 53 wt% of dry cells. The monomer units composing the polyester synthesized from octanoate were 3-hydroxyoctanoate (3HO), 3-hydroxycaproate (3HC), and 3-hydroxybutyrate (3HB) (85:13:2, mole ratio). Other low linear $C_3\simC_{10}$ monocarboxylic acids were also tested for polyester production.

  • PDF