• Title/Summary/Keyword: carbon Fibers

Search Result 844, Processing Time 0.026 seconds

A study on the properties of the carbon long-fiber-reinforced thermoplastic composite material using LFT-D method (LFT-D공법을 이용한 탄소 장섬유 강화 열가소성 복합재의 특성에 관한 연구)

  • Park, Myung-Kyu;Park, Si-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.80-85
    • /
    • 2016
  • Carbon fiber-reinforced composite materials have been widely used in various industrial fields, but there are limits to increasing their strength and stiffness, because of the short-length fibers that are impregnated in them. In this study, a lab-scale small extruder system was developed with the capability to perform the carbon fiber impregnation and extrusion process in order to evaluate the properties of long-length carbon fiber reinforced thermoplastic composite materials molded by the LFT-D method. Specimens were made with the small extruder to press-mold long-length carbon fiber composite materials and evaluate their material properties. As a result, it was found that the carbon fiber length, press load and carbon fiber contents have a considerable influence on the strength and stiffness. Additional studies on such factors as the mixing screw design and coating of the carbon fiber are needed in order to improve the mechanical properties of carbon fiber composite materials.

Synthesis of High-Quality Single-Walled Carbon Nanotube Fibers by Vertical CVD (수직 가열로를 이용한 고순도 단일벽 탄소나노튜브 섬유의 합성)

  • Kim, Tae-Min;Song, Woo-Seok;Kim, Yoo-Seok;Kim, Soo-Youn;Choi, Won-Chel;Park, Chong-Yun
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.5
    • /
    • pp.377-384
    • /
    • 2010
  • Many routes have been developed for the synthesis of signle-walled carbon nanotubes (SWCNTs). We spun fibers of SWCNTs directly from vertical furnace using a liquid source of carbon and an iron-contained molecule. The solution was prepared by ethanol as a carbon source, in which ferrocene as a catalyst, thiophene were dissolved. It was then injected from the top of the furnace into hot zone with hydrogen as a carrier gas. We successfully synthesized high-quality SWCNTs by adjusting the various experimental conditions, such as concentration of ferrocene, solution injection rate, concentration of thiophene, and hydrogen flow rate. Measurement of Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy were carried out to find the optimized conditions. The synthesized SWCNTs (1.16~1.64 nm) appeared a bundle structure and well-aligned parallel to the direction of furnace. These results also provide an simple way for high-quality SWCNTs mass production and fabricating direct spining SWCNTs fiber. It will allow one-step production of SWCNTs fiber with potentially excellent properties and wide-range applications.

A Study on Thermal Behavior and Reliability Characteristics of PCBs with a Carbon CCL (카본 CCL이 적용된 PCB의 열거동 및 신뢰성 특성 연구)

  • Cho, Seunghyun;Kim, Jeong-Cheol;Kang, Suk Won;Seong, Il;Bae, Kyung Yun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.47-56
    • /
    • 2015
  • In this paper, the Thermal behavior and reliability characteristics of carbon CCL (Copper Claded Layer), which can be used as the core of HDI (High Density Interconnection) PCB (Printed Circuit Board) are evaluated through experiments and numerical analysis using CAE (Computer Aided Engineering) software. For the characterization of the carbon CCL, it is compared with the conventional FR-4 core and Heavy Cu core. From research results, the deformation amount of the flexure strength of PCB is the highest with pitch grade carbon and thermal behavior of PCB is lowest as temperature increases. In addition, TC (Thermal Cycling), LLTS (Liquid-to-Liquid Thermal Shock) and Humidity tests have been applied in the PCB with carbon core and the reliability of PCB with carbon core is confirmed through reliability tests. Also, possibility of uneven surface of the via hole and wear of the drill bit due to the carbon fibers are analyzed. surface of the via hole is uniform, the surface of the drill bit is smooth. Therefore, it is proved that the carbon CCL has the drilling workability of the same level as conventional core material.

Thermophysical Properties of 4D Carbon/Carbon Composites with Preform Architectures (프리폼 구조에 따른 4방향성 탄소/탄소 복합재의 열물리적 특성)

  • Kim, Zeong-Baek;Lee, Ki-Woong;Park, Jong-Min;Joo, Hyeok-Jong
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.580-586
    • /
    • 2007
  • In this study, 4 directional carbon/carbon composites with different preform architectures were manufactured and their thermophysical properties are studied. Carbon fiber preforms are fabricated with fiber bundles using four different spaces. The density of the fabricated preforms were increased through pressure impregnation and carbonizing process. The increased density of the composites was graphitized at $2300^{\circ}C$. Microstructures of these composite were observed under scanning electron microscope. This was to understand the effect the preform architectures has on the thermophysical properties of carbon/carbon composites. Also, the behavior of thermal conduction and heat expansion was investigated and studied in association with the factors of the reinforced direction of fibers and unit cell of preforms.

Tensile Strength of Cement Mortar using Pitch-based Carbon Fiber Derived from Oil Residues (석유피치 재활용 탄소섬유를 혼입한 모르타르의 인장 특성)

  • Rhee, Inkyu;Lee, Jun Seok;Kim, Jin Hee;Kim, Yoong Ahm;Kim, Woo
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.20-28
    • /
    • 2017
  • The direct tensile strength of the mortar specimen containing pitch-based carbon fiber was ranged between 1/27~1/22 as compared to the average compressive strength of mortar. It was found that the direct tensile strength of the mortar containing the same amount of PAN-based carbon fiber was around 1/15. While the case of the control specimen without the carbon fiber was around 1/29. One the other hands, the flexural tensile strength of the mortar containing pitch-based carbon fibers was about 1/12 as compared to the average compressive strength. In case of the mortar specimen with PAN-based carbon fiber and control mortar were 1/10 and 1/13.5, respectively. The tensile performance of the mortar with pitch-based carbon fiber was found to be intermediate between control mortar and the reinforced mortar incorporated with the PAN-based carbon fiber.

Evaluation of Heat Resistance of Lyocell-based Carbon/Phenolic for Aerospace (항공우주용 리오셀계 탄소/페놀릭 복합재료의 내열 성능 평가)

  • Seo, Sang-Kyu;Kim, Yun-Chul;Bae, Ji-Yeul;Hahm, Hee-Chul;Hwang, Tae-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.5
    • /
    • pp.355-363
    • /
    • 2021
  • Heat resistance performance evaluation and thermal analysis were performed to confirm the applicability of the lyocell-based carbon/phenolic composite material for heat-resistant parts for aerospace. Heat resistance performance evaluation of carbon/phenolic was conducted by Thermal Protection Evaluation Motor (TPEM). In this paper, boundary layer integration code considering the boundary layer analysis of combustion gas and MSC-Marc 2018 considering ablation and thermal pyrolysis were used for the thermal analysis. The ablation and thermal insulation performance were analyzed by the pressure curve of test motor and the cut carbon/phenolic specimens. The thermal response of the lyocell-based carbon/phenolic material was similar to that of the rayon-based carbon/phenolic material. Based on the results through the combustion test, the applicability of heat-resistant parts for aerospace to which domestic lyocell-based carbon fibers were applied was confirmed.

The Effect of Multi-walled Carbon Nanotubes on the Molecular Orientation of Poly(vinyl alcohol) in Drawn Composite Films

  • Wang, Xiao;Park, Soo-Young;Yoon, Kwan-Han;Lyoo, Won-Seok;Min, Byung-Gil
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.323-327
    • /
    • 2006
  • Poly(vinyl alcohol) (PVA)/multi-walled carbon nanotube (MWNT) composite films were prepared by casting a DMSO solution of PVA and MWNTs, whereby the MWNTs were dispersed by sonication. A significant improvement in the mechanical properties of the PVA drawn films was achieved by the addition of a small amount of MWNTs. The initial modulus and the tensile strength of the PVA drawn film increased by 30 % and 45 %, respectively, with the addition of 1 wt% MWNTs, which are close to those calculated from the rule of mixtures, and were strongly dependent upon the orientation of the PVA matrix. The mechanical properties, however, were not improved with a further increase in the MWNT content. The orientation of MWNTs in the composite was not well developed compared to that of the PVA matrix. This result suggests that the improvement of the molecular orientation of the PVA matrix plays a major role in the increase of the mechanical propeties of the drawn PVA/MWNT composite films.

Mechanical Behavior of Indentation Stress in Carbon Fiber Reinforced Silicon Carbide Composites with Different Densities (서로 다른 밀도를 갖는 탄소섬유강화 탄화규소 복합재료의 압흔응력에 의한 기계적 거동)

  • Lee, Kee-Sung;Kim, Il-Kyum;Kim, Tae-Woo;Kim, Se-Young;Han, In-Sub;Woo, Sang-Kuk
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.4
    • /
    • pp.288-292
    • /
    • 2011
  • In this study, we investigated the mechanical behavior of carbon fiber reinforced silicon carbide composites by indentation stress. Relatively porous and dense fiber reinforced ceramic composites were fabricated by liquid silicon infiltration (LSI) process. Densification of fiber composite was controlled by hardening temperature of preform and consecutive LSI process. Load-displacement curves were obtained during indentation of WC sphere on the carbon fiber reinforced silicon carbide composites. The indentation damages at various loads were observed, and the elastic modulus were predicted from unloading curve of load-displacement curve.

Electro-chemical Removal Properties of Water Pollutants by Ag-ACF from Piggery Waste

  • Oh, Won-Chun;Bae, Jang-Soon;Ko, Young-Shin
    • Carbon letters
    • /
    • v.7 no.2
    • /
    • pp.105-113
    • /
    • 2006
  • The electro-chemical removal (ECR) of water pollutants by metal-ACF electrodes from wastewater was investigated over wide range of ECR time. The ECR capacities of metallic ACF electrodes were related to physical properties such as adsorption isotherm, surface area and pore size and to reaction time. Surface morphologies and elemental analysis for the metal supported ACFs after electro-catalytic reaction were investigated by scanning electron microscopy (SEM) and energy disperse X-ray (EDX) to explain the changes in adsorption properties. The IR spectra of metallic ACFs for the investigation of functional groups show that the electro-catalytic treatment is consequently associated with the removal of pollutants with the increasing surface reactivity of the activated carbon fibers. The metal-ACFs were electro-catalytically reacted to waste water to investigate the removal efficiency for the COD, T-N, $NH_4$-N, $NO_3$-N and $NO_2$-N. From these removal results of the piggery waste using metallic ACFs substrate, satisfactory removal performance was achieved. The removal efficiency of the metallic ACFs substrate was mainly determined by the properties of the material for adsorption and trapping of organics, and catalytic effects.

  • PDF

Evaluation of Dispersion of Activated Carbon Fiber in Mortar Using Electrical Resistivity Method (전기저항 측정을 통한 모르타르 내의 섬유활성탄의 분산성 평가)

  • Lee, Bo Yeon;Lee, Jae Seoung
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.283-290
    • /
    • 2017
  • Various types of fibers are utilized in cementitious materials in order to improve their performances. Here, the extent of fiber dispersion is of key importance regardless of the purpose of using fiber. In this study, activated carbon fiber dispersion in mortar samples was evaluated using electrical resistivity method. In particular, the extent of fiber dispersion was compared per mixing methods and surface treatments. The results suggest that the surface resistivity method is capable of evaluating dispersion of activated carbon fiber and that ultrasound dispersion method is superior to mortar mixer and hand mixer method. The use of superplasticizer improved dispersion but acid treatment was not effective.