DOI QR코드

DOI QR Code

Tensile Strength of Cement Mortar using Pitch-based Carbon Fiber Derived from Oil Residues

석유피치 재활용 탄소섬유를 혼입한 모르타르의 인장 특성

  • Rhee, Inkyu (Department of Civil Eng., Chonnam National University) ;
  • Lee, Jun Seok (Institute of Bio-Housing, Chonnam National University) ;
  • Kim, Jin Hee (Institute of Bio-Housing, Chonnam National University) ;
  • Kim, Yoong Ahm (School of Polymer Science and Eng., Chonnam National University) ;
  • Kim, Woo (Department of Civil Eng., Chonnam National University)
  • 이인규 (전남대학교 토목공학과) ;
  • 이준석 (전남대학교 바이오하우징연구소) ;
  • 김진희 (전남대학교 바이오하우징연구소) ;
  • 김융암 (전남대학교 고분자융합소재공학부) ;
  • 김우 (전남대학교 토목공학과)
  • Received : 2017.09.06
  • Accepted : 2017.09.29
  • Published : 2017.12.31

Abstract

The direct tensile strength of the mortar specimen containing pitch-based carbon fiber was ranged between 1/27~1/22 as compared to the average compressive strength of mortar. It was found that the direct tensile strength of the mortar containing the same amount of PAN-based carbon fiber was around 1/15. While the case of the control specimen without the carbon fiber was around 1/29. One the other hands, the flexural tensile strength of the mortar containing pitch-based carbon fibers was about 1/12 as compared to the average compressive strength. In case of the mortar specimen with PAN-based carbon fiber and control mortar were 1/10 and 1/13.5, respectively. The tensile performance of the mortar with pitch-based carbon fiber was found to be intermediate between control mortar and the reinforced mortar incorporated with the PAN-based carbon fiber.

피치계 탄소섬유를 함유한 모르타르의 직접인장강도는 평균압축강도의 1/27~1/22에 해당하였다. 동일 양의 PAN계 탄소섬유를 함유한 모르타르의 직접인장강도가 1/15임에 비하여, 낮은 수준으로 나타났다. 이 때, 무보강 기준시편의 직접인장강도는 1/29 수준이었다. 피치계 탄소섬유를 함유한 모르타르의 휨인장강도는 평균압축강도에 비해, 약 1/12 수준으로 나타났고, PAN계 탄소섬유를 함유한 모르타르와 무보강 모르타르는 각각 1/10, 1/13.5의 수준으로 나타났다. 피치계 탄소섬유를 혼입한 모르타르의 인장성능은 무보강 모르타르와 PAN계 탄소섬유를 혼입한 모르타르의 중간 수준으로 나타났다.

Keywords

References

  1. Kim, H. K., Nam, I. W., and Lee, H. K., 2014 : Enhanced effect of carbon nanotube on mechanical and electrical properties of cement composites by incorporation of silica fume, Composite Structures, 107, pp60-69. https://doi.org/10.1016/j.compstruct.2013.07.042
  2. Nam, I. W., Kim, H. K., and Lee, H. K., 2012 : Influence of silica fume additions on electromagnetic interference shielding effectiveness of multi-walled carbon nanotube/cement composites, Construction and Building Materials, 30, pp480-487. https://doi.org/10.1016/j.conbuildmat.2011.11.025
  3. Kim, G. M., Naeem, F., Kim, H. K., and Lee, H. K., 2016 : Heating and heat-dependent mechanical characteristics of CNT-embedded cementitious composites, Composite Structures, 136, pp162-170. https://doi.org/10.1016/j.compstruct.2015.10.010
  4. Hayashida, M., Yamasaki, Y., Takeda, T., and Nakamura, M., 1997 : High-modulus pitch-based graphite fibers for civil engineering and architectural applications. Nippon Steel Technical Report, 74, pp57-63.
  5. Carse, A., Spathonis, J., Chandler, L., Gilbert, D., Johnson, B., Jeary, A., and Pham, L., 2002 : Review of strengthening techniques using externally bonded fiber reinforced polymer composites (Report No. 2002-005-C-01), CRC Construction Innovation, Brisbane, Australia.
  6. Kinayekar, S. M., Gundakalle V. D., and Kulkarni, K., 2014 : The effect of addition of carbon fibers on mechanical properties of high strength concrete, Int. J. Innovative Res. Sci. Eng. Tech., 3, pp8777-8784.
  7. Matsumoto, T., 1985 : Mesophase pitch and its carbon fibers. Pure Appl Chem, 57(11), pp1553-1562. https://doi.org/10.1351/pac198557111553
  8. Huang, X., 2009 : Fabrication and properties of carbon fibers. Materials, 2, pp2369-2403. https://doi.org/10.3390/ma2042369
  9. Watanabe, F., Korai, Y., Mochida, I., and Nishimura, Y., 2000 : Structure of melt-blown mesophase pitch-based carbon fiber. Carbon, 38, pp741-747. https://doi.org/10.1016/S0008-6223(99)00148-7
  10. Suh, M. K. and Park, S. J., 2010 : Manufacture and its Commerical Application of Carbon Fiber., Polymer Science and Technology, 21, pp130-140.
  11. Chung, D. D. L., 1992 : Carbon fiber reinforced concrete (Report No. SHRP-ID/UFR-92-605), National Research Council, Washington, DC, USA.
  12. Chen, P. W. and Chung, D. D. L., 1993 : Carbon fiber reinforced concrete for smart structures capable of non-destructive flaw detection. Smart Mat. Struc., 2(1), pp22-30. https://doi.org/10.1088/0964-1726/2/1/004
  13. Chen P. W. and Chung, D. D. L., 1996 : Comparative study of concretes reinforced with carbon, polyethylene, and steel fibers and their improvement by latex addition. ACI Mat. J., 93, pp129-133.
  14. Chen, P. W., Fu, X., and Chung, D. D. L., 1997 : Microstructural and mechanical effects of latex, methyl-cellulose, and silica fume on carbon fiber reinforced cement, ACI Mat. J., 94, pp147-155.
  15. Chung, D. D. L., 2002 : Electrical conduction behavior of cement-matrix composites. J. Mat. Eng. Per., 11, pp194-204. https://doi.org/10.1361/105994902770344268
  16. Muthusamy, S. and Chung, D. D. L., 2010 : Carbon-fiber cement-based materials for electromagnetic shielding. ACI Mat. J., 107, pp602-610.
  17. Xu, Y. and Chung, D. D. L., 2001 : Silane-treated carbon fiber for reinforcing cement. Carbon, 39, pp1995-2001. https://doi.org/10.1016/S0008-6223(01)00028-8
  18. Wen, S. and Chung, D. D. L., 2007 : Partial replacement of carbon fiber by carbon black in multifunctional cement-matrix composites. Carbon, 45, pp505-513. https://doi.org/10.1016/j.carbon.2006.10.024
  19. Rhee, I., Kim, J. H., Park, S. H., Lee, S. H., Ryu, B. Y., and Kim, Y. A., 2017 : Mechanical and electrical properties of cement paste incorporated with pitch-based carbon fiber. Carbon Letters, 23, pp22-29.