• Title/Summary/Keyword: carbon Fibers

Search Result 844, Processing Time 0.031 seconds

Influence of Carbon Fiber Direction on Mechanical Properties of Milled Carbon Fibers/Carbon Blacks/Natural Rubber Compounds (탄소섬유 방향이 미분쇄 탄소섬유/카본블랙/천연고무 복합재료의 기계적 물성에 미치는 영향)

  • Ham, Eun-Kwang;Choi, Kyeong-Eun;Ko, Jae-Kyoung;Seo, Min-Kang
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.179-184
    • /
    • 2016
  • In this work, the influence of milled carbon fiber direction on mechanical properties of milled carbon fibers/carbon blacks/natural rubber compounds was investigated. The compounds were prepared by adding the 6 phr milled carbon fibers (MCFs) and 40 phr carbon blacks (CBs) into the natural rubber. The MCFs were aligned in a parallel and orthogonal direction in the compounds using two-roll-mill machine. Mechanical properties of compounds were studied by tensile characteristics and tearing strength. As a result, the compounds showed higher tensile strength, 100%~300% modulus, and tearing strength than those of using any other compounds due to the aligning MCFs in parallel. Mechanical properties of the compounds reinforced with non-aligned MCFs were inferior to those of others. Consequently, the parallel aligned MCFs in the compounds led to an increase of tensile properties and improvement of tearing strength, resulted from MCFs with the high elastic modulus.

Polymer matrices for carbon fiber-reinforced polymer composites

  • Jin, Fan-Long;Lee, Seul-Yi;Park, Soo-Jin
    • Carbon letters
    • /
    • v.14 no.2
    • /
    • pp.76-88
    • /
    • 2013
  • Carbon fibers (CFs) have high service temperature, strength, and stiffness, and low weight. They are widely used as reinforcing materials in advanced polymer composites. The role of the polymer matrix in the composites is to provide bulk to the composite laminate and transfer load between the fibers. The interface between the CF and the resin matrix plays a critical role in controlling the overall properties of the composites. This paper aims to review the synthesis, properties, and applications of polymer matrices, such as thermosetting and thermoplastic resins.

Some Consideration on Structure of Carbon fibers during Hot Stretching (고온 연신 열처리 탄소섬유의 구조 고찰)

  • Kim, Hong-Su
    • Korean Journal of Materials Research
    • /
    • v.9 no.1
    • /
    • pp.30-34
    • /
    • 1999
  • A polyacrylonitrile(PAN)-based carbon fiber tow was heat-treated by directly passing electric current through the tow. The effects of the stretching stress applied during high temperature heat-treatment of PAN-based carbon fibers were investigated by measuring the electric resistance changes taking place during the internal resistance heating. The structure parameters characterizing the stacks of carbon layer, such as interlayer spacing, sizes and orientation of the carbon fibers heat-treated with hot-stretching were evaluated as a function of surface temperature of tow during heat treatment in the range of $1000~2400^{\circ}C$. Though the layer extent in the fiber axis direction depends strongly on the electric resistance, the changes in a crystallite parameter is independent of the longitudinal strain.

  • PDF

Antibacterial Activity of Activated Carbon Fibers Containing Silver Metal

  • Park, Soo-Jin;Kim, Byung-Joo;Ryu, Seung-Kon
    • Carbon letters
    • /
    • v.4 no.3
    • /
    • pp.140-145
    • /
    • 2003
  • Antibacterial behaviors of PAN-based activated carbon fibers (ACFs) containing silver metal were investigated. The effects of surface and pore structures of the ACFs were studied by $N_2$/77 K adsorption and D-R plot as a function of silver loading content. The antibacterial activities were investigated by a dilution test against Staphylococcus aureus (S. aureus; gram positive) and Klebsiella pnemoniae (K. pnumoniae; gram negative). As experimental results, the ACFs showed some decreases in specific surface areas, micropore volumes, and total pore volume with an increase of silver content. However, the antibacterial activities of the ACFs were strongly increased against S. aureus as well as K. pnumoniae, which could be attributed to the presence of antibacterial metal in the ACFs system.

  • PDF

Heavy Metal Adsorption of Anodically Treated Activated Carbon Fibers in Aqueous Solution

  • Park, Soo-Jin;Kim, Young-Mi
    • Carbon letters
    • /
    • v.4 no.1
    • /
    • pp.21-23
    • /
    • 2003
  • In this work, the effect of anodic oxidation treatment on Cr(VI) ion adsorption behaviors of activated carbon fibers (ACFs) was investigated. The aqueous solutions of 10 wt% $H_3PO_4$ and $NH_4OH$ were used for acidic and basic electrolytes, respectively. Surface characteristics and textural properties of ACFs were determined by XPS and $N_2$ adsorption at 77 K. The heavy metal adsorption of ACFs was conducted by ICP. As a result, the adsorption amount of the anodized ACFs was improved in order of B-ACFs > A-ACFs > pristine-ACFs. In case of the anodized treated ACFs, the specific surface area was decreased due to the pore blocking or pore destroying by acidic electrolyte. However, the anodic oxidation led to an increase of the Cr(VI) adsorption, which can be attributed to an increase of oxygen-containing functional groups, such as, carboxylic, lactonic, and phenolic groups. It was clearly found that the Cr(VI) adsorption was largely influenced by the surface functional groups, in spite of the reduced specific surface area of the ACFs.

  • PDF

SO2 Adsorption Characteristics by Cellulose-Based Lyocell Activated Carbon Fiber on Cu Additive Effects (셀룰로오스계 라이오셀 활성탄소섬유의 구리 첨착에 의한 SO2 흡착특성 변화)

  • Kim, Eun Ae;Bai, Byong Chol;Lee, Chul Wee;Lee, Young-Seak;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.394-399
    • /
    • 2015
  • In this study, the Cu catalyst decorated with activated carbon fibers were prepared for improving $SO_2$ adsorption properties. Flame retardant and heat treatments of Lyocell fibers were carried out to obtain carbon fibers with high yield. The prepared carbon fibers were activated by KOH solution for the high specific surface area and controlled pore size to improve $SO_2$ adsorption properties. Copper nitrate was also used to introduce the Cu catalyst on the activated carbon fibers (ACFs), which can induce various reactions in the process; i) copper nitrate promotes the decomposition reaction of oxygen group on the carbon fiber and ii) oxygen radical is generated by the decomposition of copper oxide and nitrates to promote the activation reaction of carbon fibers. As a result, the micro and meso pores were formed and Cu catalysts evenly distributed on ACFs. By Cu-impregnation process, both the specific surface area and micropore volume of carbon fibers increased over 10% compared to those of ACFs only. Also, this resulted in an increase in $SO_2$ adsorption capacity over 149% than that of using the raw ACF. The improvement in $SO_2$ adsorption properties may be originated from the synergy effect of two properties; (i) the physical adsorption from micro, meso and specific surface area due to the transition metal catalyst effect appeared during Cu-impregnation process and ii) the chemical adsorption of $SO_2$ gas promoted by the Cu catalyst on ACFs.

Effects of maleic anhydride content on mechanical properties of carbon fibers-reinforced maleic anhydride-grafted-poly-propylene matrix composites

  • Kim, Hyun-Il;Han, Woong;Choi, Woong-Ki;Park, Soo-Jin;An, Kay-Hyeok;Kim, Byung-Joo
    • Carbon letters
    • /
    • v.20
    • /
    • pp.39-46
    • /
    • 2016
  • In this work, the effects of maleic anhydride (MA) content on mechanical properties of chopped carbon fibers (CFs)-reinforced MA-grafted-polypropylene (MAPP) matrix composites. A direct oxyfluorination on CF surfaces was applied to increase the interfacial strength between the CFs and MAPP matrix. The mechanical properties of the CFs/MAPP composites are likely to be different in terms of MA content. Surface characteristics were observed by scanning electron microscope, Fourier transform infrared spectroscopy, and single fiber contact angle method. The mechanical properties of the composites were also measured by a critical stress intensity factor (KIC). From the KIC test results, the KIC values were increased to a maximum value of 3.4 MPa with the 0.1 % of MA in the PP, and then decreased with higher MA content.

Surface Treatment of Carbon Fiber by Hydrogen Sulfide (탄소섬유 표면의 H2S 처리에 관한 연구)

  • Shin, Kyoung-Han;Han, Jeong-Ryeon
    • Applied Chemistry for Engineering
    • /
    • v.1 no.2
    • /
    • pp.176-181
    • /
    • 1990
  • For the purpose of the improvement of interfacial shear strength in carbon fiber/aluminum matrix composite material, polyacrylonitrile-based carbon fibers were surface treated by hydrogen sulfide gas continuously between 400 and $600^{\circ}C$. Surface treated carbon fibers were analysed by scanning electron microscope. The existence of sulfur compound on treated carbon fiber surfaces was confirmed, and carbon and oxygen contents of the fiber surfaces were examined by X-ray photoelectron spectroscopy. Optimum treating temperature for the adsorption of sulfur on the carbon fiber surface was $500^{\circ}C$. Sulfur compounds on the carbon fiber surfaces form the structures of disulfide, $(S)_n$ and thiophene. The decrease in the tensile strength of the carbon fibers was observed less than about 5%.

  • PDF

A Review of Carbon-Reinforced Carbon Nanotube Fibers Composites (탄소강화 탄소나노튜브 섬유 복합소재 연구 동향)

  • Lee, Dongju;Ryu, Seongwoo;Ku, Bon-Cheol
    • Composites Research
    • /
    • v.32 no.3
    • /
    • pp.127-133
    • /
    • 2019
  • Although carbon nanotubes(CNTs) have outstanding theoretical mechanical and electrical properties, CNT fibers(CNTFs) have not yet reached that level. Particularly, tensile strength is only about 10% or less, so studies for making up for it are being actively conducted. As a way for improving mechanical strength, methods such as synthesizing long CNT, orientation, chemical cross-linking, hydrogen bonding and polymer infiltration are being studied. In this review paper, we report preparation methods for highly conductive and strong CNTF/Carbon composites through coating and infiltration followed by carbonization of carbon precursor polymers such as polyacrylonitrile (PAN) and polydopamine (PDA) on CNTFs.

Silver Up-Take by Modified Pitches

  • Manocha, Satish M.;Patel, Mitesh
    • Carbon letters
    • /
    • v.3 no.1
    • /
    • pp.13-16
    • /
    • 2002
  • The modification of coal-tar pitch has been carried out by heat treatment of pitch at different temperatures in the range ($300^{\circ}-400^{\circ}C$) for different times (2-5 hrs) in air and nitrogen. The pitch heat treated in air at lower temperature ($300^{\circ}C$) exhibit increase in softening point by $20^{\circ}C$ as compared to only $2^{\circ}C$ when treated in nitrogen. The changes are faster in air than in pure nitrogen. Pitch as such as well as after heat treatment were further treated with metal complexes by solution route. Silver intake has been found to increase from 0.5 to 0.8 % in nitrogen treated pitch while the uptake is found to decrease for pitches treated in air at $350^{\circ}C$ for 5 hrs. Experiments have also been made to incorporate silver into PAN and PAN-ox fibers through solution route. The metal intake has been found to be more in PAN-ox fibers than in PAN as such. Metal loaded carbon composites have been made by using metal loaded fibers as well as cokes. These composites as such exhibit higher surface oxygen complexes but decrease after activation.

  • PDF