• Title/Summary/Keyword: carbon Fibers

Search Result 843, Processing Time 0.029 seconds

Preparation and Characterization of Highly Conductive Nickel-coated Glass Fibers

  • Kim, Byung-Joo;Choi, Woong-Ki;Song, Heung-Sub;Park, Jong-Kyoo;Lee, Jae-Yeol;Park, Soo-Jin
    • Carbon letters
    • /
    • v.9 no.2
    • /
    • pp.105-107
    • /
    • 2008
  • In this work, we employed an electroless nickel plating on glass fibers in order to enhance the electric conductivity of fibers. And the effects of metal content and plating time on the conductivity of fibers were investigated. From the results, island-like metal clusters were found on the fiber surfaces in initial plating state, and perfect metallic layers were observed after 10 min of plating time. The thickness of metallic layers on fiber surfaces was proportion to plating time, and the electric conductivity showed similar trends. The nickel cluster sizes on fibers decreased with increasing plating time, indicating that surface energetics of the fibers could become more homogeneous and make well-packed metallic layers, resulting in the high conductivity of Ni/glass fibers.

A Study on the Preparation of the Eco-friendly Carbon Fibers-Reinforced Composites

  • Choi, Kyeong-Eun;Seo, Min-Kang
    • Carbon letters
    • /
    • v.14 no.1
    • /
    • pp.58-61
    • /
    • 2013
  • In this work, the effect of catalysts on the mechanical properties of carbon fibers-reinforced epoxy matrix composites cured by cationic latent thermal catalysts, i.e., N-benzylpyrazinium hexafluoroantimonate (BPH) was studied. Differential scanning calorimetry was executed for thermal characterization of the epoxy matrix system. Mechanical interfacial properties of the composites were studied by interlaminar shear strength (ILSS), critical stress intensity factor ($K_{IC}$), and specific fracture energy ($G_{IC}$). As a result, the conversion of neat epoxy matrix cured by BPH was higher than that of one cured by diaminodiphenyl methane (DDM). The ILSS, $K_{IC}$, $G_{IC}$, and impact strength of the composites cured by BPH were also superior to those of the composites cured by DDM. This was probably the consequence of the effect of the substituted benzene group of BPH catalyst, resulting in an increase in the cross-link density and structural stability of the composites studied.

Oxidation Kinetics of Pitch Based Carbon Fibers

  • Roh, Jae-Seung
    • Carbon letters
    • /
    • v.9 no.2
    • /
    • pp.121-126
    • /
    • 2008
  • High modulus pitch based carbon fibers (HM) were exposed to isothermal oxidation using tube furnace in carbon dioxide gas to study the oxidation kinetics under the temperature of $800-1100^{\circ}C$. The kinetic equation $f=1-{\exp}(-at^b)$ was introduced and the constant b was obtained in the range of 1.02~1.42. The oxidation kinetics were evaluated by the reaction-controlling regime (RCR) depending upon the apparent activation energies with the conversion increasing from 0.2 to 0.8. The activation energies decrease from 24.7 to 21.0 kcal/mole with the conversion increasing from 0.2 to 0.8, respectively. According to the RCR, the reaction was limited by more diffusion controlling regime for the HM fibers with the conversion increasing. Therefore, it seems that the oxidation which is under the diffusion controlling regime takes place continuously from the skin to the core of the fiber.

Enhanced Interfacial Adhesion of Carbon Fibers by Poly (arylene ether phosphine oxide) Coatings (Poly(arylene ether phosphine oxide) 코팅에 의한 탄소섬유의 계면 접착성 향상 연구)

  • 김익천;강현민;육종일;윤태호
    • Composites Research
    • /
    • v.12 no.4
    • /
    • pp.55-61
    • /
    • 1999
  • Interfacial shear strength (IFSS) of poly(arylene ether phosphine oxide) (PEPO) coated carbon fibers was evaluated via microdroplet test and compared with results obtained from carbon fibers coated with poly(arylene ether sulfone) (PES), Udel$^{\circledR}$ P-1700 and Ultem$^{\circledR}$ 1000. Interfacial adhesion between thermoplastics and uncoated carbon fibers was also measured in order to understand the adheion mechanism. PEPO coated carbon fibers showed the highest IFSS, followed by PES, Udel and Ultem coated fibers. A similar trend was observed for thermoplastic/uncoated fibers. SEM analysis indicated that only PEPO coated fiber exhibited cohesie failure in the vinylester resin, while others showed failure at or near the interface of polymer coating and vinylester resin. The enhanced interfacial adhesion by PEPO coating could be attributed to the strong interaction of P = 0 moiety to the fiber as well as to the vinylester resin.

  • PDF

Protective SiC Coating on Carbon Fibers by Low Pressure Chemical Vapor Deposition

  • Bae, Hyun Jeong;Kim, Baek Hyun;Kwon, Do-Kyun
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.702-707
    • /
    • 2013
  • High-quality ${\beta}$-silicon carbide (SiC) coatings are expected to prevent the oxidation degradation of carbon fibers in carbon fiber/silicon carbide (C/SiC) composites at high temperature. Uniform and dense ${\beta}$-SiC coatings were deposited on carbon fibers by low-pressure chemical vapor deposition (LP-CVD) using silane ($SiH_4$) and acetylene ($C_2H_2$) as source gases which were carried by hydrogen gas. SiC coating layers with nanometer scale microstructures were obtained by optimization of the processing parameters considering deposition mechanisms. The thickness and morphology of ${\beta}$-SiC coatings can be controlled by adjustment of the amount of source gas flow, the mean velocity of the gas flow, and deposition time. XRD and FE-SEM analyses showed that dense and crack-free ${\beta}$-SiC coating layers are crystallized in ${\beta}$-SiC structure with a thickness of around 2 micrometers depending on the processing parameters. The fine and dense microstructures with micrometer level thickness of the SiC coating layers are anticipated to effectively protect carbon fibers against the oxidation at high-temperatures.

Preparation of PAN-based Activated Carbon Fibers by Physical Activation (물리적 활성화에 의한 PAN계 활성탄소섬유의 제조)

  • 임연수;김기원;정승훈;김기덕;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1016-1021
    • /
    • 1999
  • In this study activated carbon fibers were prepared from PAN-based carbon fibers by physical activation with steam or carbon dioxide. The variations in specific surface area amount of iodine adsorption and pore size distribution of the activated carbon fibers after the activation process were discussed. in steam activation BET surface area of about 1019 m2/g was obtained after 77% burn-off while carbn dioxide activation produced ACF with 694m2/g of BET surface area after 52% burn-off. However carbon dioxide activation produced at a similar degree of activation higher micropore volume(0.37 cc/g) and amount of iodine adsorption (1589mg/g) than steam activation. Nitrogen adsorption isotherms for (PAN based activated carbon fibers that prepared by physical activation were of type I in the Brunauer-Deming-Deming-Teller classification

  • PDF

Effect of Oxyfluorination of Activated Carbon Fibers on Adsorption of Benzene Gas Causing Sick House Syndrome (새집증후군 유발 벤젠가스 흡착에 미치는 활성탄소섬유의 함산소불소화 영향)

  • Lim, Hyung Soon;Kim, Min-Ji;Kong, Eun Young;Jeong, Jin-do;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.312-317
    • /
    • 2018
  • In this study, activated carbon fibers (ACFs) were treated by oxy-fluorination to improve the adsorption property of benzene gas, one of the gases causing sick house syndrome. Surface properties and pore characteristics of oxyfluorinated activated carbon fibers were confirmed by X-ray photoelectron Spectroscopy (XPS) and Brunauer-Emmett-Teller (BET), and adsorption properties of benzene gas were evaluated by gas chromatography (GC). As a result of XPS data, it was confirmed that the fluorine functional groups on activated carbon fibers surface increased with increasing the fluorine partial pressure. The specific surface area of all samples decreased after the oxyfluorination treatment, but the micropore volume ratio increased when the fluorine partial pressure was at 0.1 bar. The oxyfluorinated activated carbon fibers adsorbed 100 ppm benzene gas for an 11 h, it was found that the adsorption efficiency of benzene gas was improved about twice as much as that of untreated ones.

Effect of Anodized Carbon Fiber Surfaces on Mechanical Interfacial Properties of Carbon Fibers-reinforced Composites (탄소섬유의 양극산화가 탄소섬유 강화 복합재료의 기계적 계면 특성에 미치는 영향)

  • 박수진;오진석;이재락
    • Composites Research
    • /
    • v.15 no.6
    • /
    • pp.16-23
    • /
    • 2002
  • In this work, the effect of anodic oxidation on surface characteristics of high strength PAN-based carbon fibers was investigated in mechanical interfacial properties of composites. The surface properties of the carbon fibers were determined by acid-base values, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and contact angles. And their mechanical interfacial properties of the composites were studied in interlaminar shear strength (ILSS) and critical stress intensity factor ($K_{IC}$). As a result, the acidity or the $O_{ls}/C_{ls}$ ratio of carbon fiber surfaces was increased, due to the development of the oxygen functional groups. Consequently, the anodic oxidation led to an increase in surface free energy of the carbon fibers, mainly due to the increase of its specific (or polar) component. The mechanical interfacial properties of the composites, including ILSS and $K_{IC}$, had been improved in the anodic oxidation on fibers. These results were explained that good wetting played an important role in improving the degree of adhesion at interfaces between fibers and epoxy resin matrix.

Measurement of a gauge factor of a carbon fiber and its application to sensors (탄소섬유의 게이지 계수 측정 및 센서 응용)

  • Kim, Ji-Kwan;Park, Chang-Sin;Lee, Dong-Weon
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.162-167
    • /
    • 2008
  • In this paper we report on the electrical properties of carbon fiber which is an attractive material for strain gauges and can also be applied to resonating micro sensors. The carbon fibers used in this research was manufactured from polyactylonitrile (PAN). The fabricated carbon fibers had about $10\;{\mu}m$ in length and several centimeters in length. We employed a micro structure to measure electrical properties of the carbon fiber. The measured electrical resistivity of the carbon fibers were about $3{\times}10^{-3}{\Omega}{\cdot}cm$ A gauge factor of the carbon fiber is also observed with the same system and it was about 400, depending on the structure of the carbon fiber. For the sensor applications of the carbon fiber, it is selectively placed between the gap of Al electrodes using a dielectrophoresis method. When the carbon fiber is resonated by a piezoelectric ceramic, resistance change at a variety of resonance mode was observed through an electrical system.

Reaction Rates for the Oxidation of Pitch based Carbon Fibers in Air and Carbon Dioxide Gas

  • Roh, Jae-Seung
    • Carbon letters
    • /
    • v.4 no.4
    • /
    • pp.185-191
    • /
    • 2003
  • Two types of carbon fiber based high modulus- and isotropic-pitch were exposed to isothermal oxidation in air and $CO_2$ gas and the weight change was measured by TGA apparatus. The kinetic equation was introduced $f=1-{\exp}(-at^b)$ and the constant b was obtained in the range of 1.02~1.68 for the isotropic fiber and obtained 0.91~1.93 for the high modulus fiber respectively. In considering the effect of the atmosphere for isothermal oxidation, the value of the constant b obtained in the carbon dioxide was higher than that obtained in the air. Therefore, it was found that the pitch based carbon fiber shows sigmoidal characteristic when it is oxidized in the carbon dioxide. In addition, it was also found that $k_f = 0.5$, which was reaction constant at f = 0.5, was a very useful parameter for evaluation of the oxidation reactivity of pitch based carbon fibers. According to the consideration, it is suggested that the conversion-time curves of the pitch based carbon fibers are correlated by normalized equation $f=1-{\exp}(-A{\tau}^B)$, where ${\tau}=t/t_f= 0.5$.

  • PDF