• 제목/요약/키워드: carbide precipitation

검색결과 117건 처리시간 0.021초

The Effect of Carbide Precipitation on the High Temperature Deformation of Ni3Al and TiAl

  • Han, Chang-Suk;Kim, Jang-Woo;Kim, Young-Woo
    • 대한금속재료학회지
    • /
    • 제47권3호
    • /
    • pp.147-154
    • /
    • 2009
  • The effect of carbon addition on the microstructures and mechanical properties of $Ni_3Al$ and TiAl intermetallic alloys have been characterized. It is shown that carbon is not only an efficient solid solution strengthener in $Ni_3Al$ and TiAl, it is also an efficient precipitation strengthener by fine dispersion of carbide. Transmission electron microscope investigation has been performed on the particle-dislocation interactions in $Ni_3Al$ and TiAl intermetallics containing various types of fine precipitates. In an $L1_2$-ordered $Ni_3Al$ alloy with 4 mol.% of chromium and 0.2~3.0 mol.% of carbon, fine octahedral precipitates of $M_{23}C_6$ type carbide, which has the cube-cube orientation relationship with the matrix, appear during aging. Typical Orowan loops are formed in $Ni_3Al$ containing fine dispersions of $M_{23}C_6$ particles. In the L10-ordered TiAl containing 0.1~2.0 mol.% carbon, TEM observations revealed that needle-like precipitates, which lie only in one direction parallel to the [001] axis of the $L1_0$ matrix, appear in the matrix and preferentially at dislocations. Selected area electron diffraction (SAED) patterns analyses have shown that the needle-shaped precipitate is $Ti_3AlC$ of perovskite type. The orientation relationship between the $Ti_3AlC$ and the $L1_0$ matrix is found to be $(001)_{Ti3AlC}//(001)_{L10\;matrix}$ and $[010]_{Ti3AlC}//[010]_{L10\;matrix}$. By aging at higher temperatures or for longer period at 1073 K, plate-like precipitates of $Ti_2AlC$ with a hexagonal structure are formed on the {111} planes of the $L1_0$ matrix. The orientation relationship between the $(0001)_{Ti2AlC}//(111)_{L10\;matrix}$ is and $[1120]_{Ti2AlC}//[101]_{L10\;matrix}$. High temperature strength of TiAl increases appreciably by the precipitation of fine carbide. Dislocations bypass the carbide needles at further higher temperatures.

폐초경 스크랩 코발트 침출용액으로부터 옥살산 및 수산화물 침전에 의한 코발트 분말 회수 (Cobalt Recovery by Oxalic Acid and Hydroxide Precipitation from Waste Cemented Carbide Scrap Cobalt Leaching Solution)

  • 이재성;김민구;김슬기;이동주
    • 한국분말재료학회지
    • /
    • 제28권6호
    • /
    • pp.497-501
    • /
    • 2021
  • Cobalt (Co) is mainly used to prepare cathode materials for lithium-ion batteries (LIBs) and binder metals for WC-Co hard metals. Developing an effective method for recovering Co from WC-Co waste sludge is of immense significance. In this study, Co is extracted from waste cemented carbide soft scrap via mechanochemical milling. The leaching ratio of Co reaches approximately 93%, and the leached solution, from which impurities except nickel are removed by pH titration, exhibits a purity of approximately 97%. The titrated aqueous Co salts are precipitated using oxalic acid and hydroxide precipitation, and the effects of the precipitating agent (oxalic acid and hydroxide) on the cobalt microstructure are investigated. It is confirmed that the type of Co compound and the crystal growth direction change according to the precipitation method, both of which affect the microstructure of the cobalt powders. This novel mechanochemical process is of significant importance for the recovery of Co from waste WC-Co hard metal. The recycled Co can be applied as a cemented carbide binder or a cathode material for lithium secondary batteries.

발전플렌트용 9Cr 페라이트 내열강의 미세조직과 강도특성 (Microstructure and Strength Characteristic of 9Cr Ferritic Heat-resistant Steel Applied to the Power Plants)

  • 강창룡;이종문;이규현;이문용;성장현
    • 열처리공학회지
    • /
    • 제13권1호
    • /
    • pp.27-34
    • /
    • 2000
  • This present study were investigated effect of Ni contents on the microstructure and strength characteristic in 9Cr ferritic heat-resistant steel added 1.7%W in place of Mo in order to restrain laves phase formation. The result obtained from this study are as follow. Volume fraction, number of particles per unite area and particle size of carbide decreased with increase of Ni contents. Other side, carbides of $M_{23}C_6$ type was mainly precipitated in this steel, but laves phases could not precipitated in spite of increasing of aging time. With increase of tempering temperature, hardness was increased, and maximum value was showed around 873k by secondary hardening due to precipitation of $W_2C$ type carbide and then, was decreased. Tensile and yield strength due to decrease precipitation amount of carbide and number of particles per unite area was decreased, but elongation and impact value was increased. In case of aged specimen after tempering than tempered specimen, strength was higher and elongation was lower due to increasing of precipitated amount of carbide and number of particles per unite area.

  • PDF

Computational and Experimental Study of Grain Growth in WC-Co and WC-VC-Co Cemented Carbides

  • Shin, Soon-Gi
    • 한국재료학회지
    • /
    • 제19권11호
    • /
    • pp.588-595
    • /
    • 2009
  • The knowledge of grain growth of carbide particles is very important for manufacturing micrograined cemented carbides. In the present study, continuous and discontinuous grain growth in WC-Co and WC-VC-Co cemented carbides is investigated using the Monte Carlo computer simulation technique. The Ostwald ripening process (solution/re-precipitation) and the grain boundary migration process are assumed in the simulation as the grain growth mechanism. The effects of liquid phase fraction, grain boundary energy and implanted coarse grain are examined. At higher liquid phase content, mass transfer via solid/liquid interfaces plays a major role in grain growth. Growth rate of the implanted grain was higher than that of the matrix grains through solution/re-precipitation and coalescence with neighboring grains. The results of these simulations qualitatively agree with experimental ones and suggest that distribution of liquid phase and carbide particle/carbide grain boundary energy as well as contamination by coarse grain are important factors controlling discontinuous grain growth in WC-Co and WC-VC-Co cemented carbides. The contamination by coarse grains must by avoided in the manufacturing process of fine grain cemented carbides, especially with low Co.

IN792+Hf 초내열합금의 응고거동에 미치는 응고속도의 영향 (The Effect of Solidification Rate on Solidification Behavior in IN792+Hf Superalloy)

  • 배재식;김현철;이재현;유영수;조창용
    • 한국재료학회지
    • /
    • 제11권6호
    • /
    • pp.502-507
    • /
    • 2001
  • 일방향응고법으로 IN792+Hf 초내열합금의 응고속도에 따른 응고거동의 변화에 대해 연구하였다. 조직관찰을 통해 각 상의 응고과정과 석출거동을 분석하였다 일방향응고시 응고속도가 감소하면 문자형의 탄화물은 면상 탄화물로 변화하였고 ${\gamma}$상과 탄화물의 결합은 탄화물의 수지상 성장에 의한 것임을 확인할 수 있었다. 긴 막대형상의 탄화물이 0.5$\mu\textrm{m}$/s의 응고속도에서 입계를 따라 형성되었으며 잔류액상지역에서 ${\gamma}$'형성원소가 풍부한 구역과 고갈된 구역이 발견되었다. 공정 ${\gamma}$/${\gamma}$'은 형성원소가 풍부한 구역에서 핵생성하였으며 공정 ${\gamma}$/${\gamma}$'의 형성은 잔류액상지역의 (Ti+Hf+Ta+W)/Al 비율을 높여 η상의 석출을 유발하였다. 느린 응고속도에서는 잔류액상지역으로부터의 충분한 역확산으로 (Ti+Hf+Ta+W)/Al 비율이 낮아져 η상의 석출이 억제되었다.

  • PDF

진공 정밀주조한 Inconel 713C 합금의 조직과 기계적 성질에 미치는 열처리의 영향 (The Effect of Heat Treatment on the Microstructures and Mechanical Properties of Inconel 713C Alloy Vacuum Investment Castings)

  • 유병기;최학규;박흥일;정해용
    • 한국주조공학회지
    • /
    • 제40권2호
    • /
    • pp.16-24
    • /
    • 2020
  • The effect of a heat treatment on the microstructure and mechanical properties of Inconel 713C alloy vacuum investment castings were investigated. The microstructure of the as-cast state was observed, showing well-developed dendrite structures and distributed carbide particles and solidified massive precipitates in the grain or grain boundary during solidification, in this case the γ′ phase and MC particles. During a heat treatment, the γ phase matrix was reinforced by solid solution elements, carbide particles from the film morphology precipitated along the grain boundary, and many micro-precipitates of second γ′ phases 0.2 ㎛~2 ㎛ in size were newly formed in the γ phase matrix according to SEM-EDS analysis results. The tensile strength at a high temperature (850℃) decreased slightly becoming comparable with the room-temperature result, while the hardness value of the specimen after the vacuum heat treatment increased by approximately 19%, becoming similar to that of the as-cast condition. However, the impact values at room temperature and low temperature (-196℃) were approximated; this alloy was mostly not affected by an impact at a low temperature. In the observations of the fracture surface morphologies of the specimens after the tensile tests, the fractures at room temperature were a mix of brittle and ductile fractures, and an intergranular fracture in the inter-dendrite structure and some dimples in the matrix were observed, whereas the fractures at high temperatures were ductile fractures, with many dimples arising due to precipitation. It was found that a reinforced matrix and precipitates of carbide and the γ′ phase due to the heat treatment had significant effects, contributing greatly to the excellent mechanical properties.

Hastelloy X 주조재의 열간 노출에 따른 미세조직 및 인장 특성 변화 (The Effect of Thermal Exposure on the Microstructural Evolution and Tensile Properties in Cast Hastelloy X)

  • 최백규;김인수;도정현;정중은;정인용;홍현욱;조창용
    • 한국주조공학회지
    • /
    • 제37권5호
    • /
    • pp.139-147
    • /
    • 2017
  • Microstructural evolution of cast Hastelloy X during thermal exposure has been investigated. OM, SEM, and TEM microscopy were carried out on the as-cast, the standard heat treated, and the thermally exposed conditions. Tensile tests were also conducted to understand the effect of microstructural evolution on the degradation of tensile properties. Coarse $M_6C$ and fine $M_{23}C_6$ carbides were found in as-cast Hastelloy X with fine carbides on sub-boundary. Some of $M_{23}C_6$ carbide dissolved into the matrix during solution heat treatment and dislocation network formed at the interface between the carbide and the matrix due to the misfit strain. There was no significant microstructural difference between the exposed specimens at $400^{\circ}C$ and the solution heat treated specimen. A large amount of $M_{23}C_6$ carbides precipitated along and near grain boundaries and sub-boundaries after exposure at $650^{\circ}C$. Exposure at $870^{\circ}C$ of the alloy caused precipitation of $M_6C$ and ${\mu}$. The strength increased and the elongation decreased by thermal exposure at $650^{\circ}C$ and $870^{\circ}C$ because carbides interfere with the movement of the dislocation. It was found that the precipitation of carbide gave significant effects on the tensile properties of Hastelloy X.

Cr-Mo-V-Ti 저합금강에서 노멀라이징 열처리조건에 따른 석출물의 거동 (Carbide Precipitation Behavior During Normalizing Heat Treatment in Low-alloyed Cr-Mo-V-Ti Steel)

  • 김홍기;나혜성;이상훈;강정윤
    • 열처리공학회지
    • /
    • 제30권2호
    • /
    • pp.43-52
    • /
    • 2017
  • Heat treatment condition for dissolution of the M23C6 carbides in 2.25Cr-1Mo-V-Ti material for thermal power plant tube was investigated using a dilatometer method. 2.25Cr-1Mo-V-Ti material was heat-treated at $900{\sim}1,100^{\circ}C$ for 0, 10, 30 min to find the proper dissolution condition of M23C6 carbides. The phase identification and volume fraction of the carbide were measured by using OM, SEM, EBSD and TEM analysis. Optimal heat treatment condition of M23C6 carbide dissolution was selected by predicting dissolution temperature of carbide using Bs points appeared at dilatometer curve. Experimental results showed that the conditions of carbide dissolution was 900, 1,000, $1,100^{\circ}C$ for 30 min. Eventually, the optimal heat treatment condition for dissolution was 30 min at $1,000^{\circ}C$ considering the minimum coarsening of Austenite grain size.

인코넬 합금의 열처리에 따른 입계 탄화물 석출 및 입계응력부식 거동 (The Effects of Heat Treatment on Intergranular Carbide Precipitations and Intergranular Stress Corrosion Cracking of Inconel alloy)

  • 맹완영;남태운
    • 열처리공학회지
    • /
    • 제10권4호
    • /
    • pp.219-231
    • /
    • 1997
  • Inconel alloys used as nuclear power plant components have experienced intergranular stress corrosion cracking problems inspite of their good corrosion characteristics. In order to investigate the effects of heat treatments on carbide precipitation and intergranular stress corrosion cracking(IGSCC) in Inconel alloys, DSC(Differential Scanning Calorimeter), TEM, EDXS and static potential corrosion tests were carried out. Thermal treatment at $750^{\circ}C$ for 15hours in Inconel alloys increased the density of intergranular carbide. The carbides are mainly $Cr_7C_3$ in Inconel 600, and $Cr_{23}C_6$ in Inconel 690. The Cr depletion around grain boundary is not crucial factor on IGSCC. The carbides in grain boundary play an important role as acting dislocation source, and as decreasing stress around growing crack.

  • PDF

발전플렌트용 9Cr 페라이트 내열강의 고온강도 특성에 미치는 Ni의 영향 (Effect of Ni on the High Strength Characteristic of 9Cr Ferritic Heat Resistant Steel Applied to the Power Plants)

  • 강창룡;궁원일재
    • 동력기계공학회지
    • /
    • 제4권1호
    • /
    • pp.74-80
    • /
    • 2000
  • This present study was investigated effect of Ni contents on the high temperature strength characteristic in 9Cr ferritic heat-resistant steel added 1.7%W in place of Mo in order to restraint laves phase formation. Precipitation amount of carbide, number of particle per unit area and particle size of carbide were decreased with increase of Ni content. In the steels, carbides of $M_{23}C_6$ type was mainly precipitated, but laves phases could not precipitated. Tensile and yield strength, creep strength and creep rupture time was decreased, but elongation were increased due to decreasing of particle number per unite area and carbide amount precipitated with increase of Ni content.

  • PDF