• Title/Summary/Keyword: car signal controller

Search Result 31, Processing Time 0.03 seconds

A System Development for Car Signal and Sensor Control with Controller Area Network (CAN) Communication Protocol (Controller Area Network(CAN) 통신 프로토콜에 의한 자동차 신호 및 센서 제어 시스템의 개발)

  • 정차근
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.3
    • /
    • pp.54-62
    • /
    • 2002
  • This paper describes a development of the integrated controller system for car electrical signal and sensor input/output control with CAN communication protocol. In order to improve the system reliability and effectiveness for the conventional controller using the wiring harness, a detailed integrated control system is introduced and discussed. The CAN communication protocol is a robust control method with serial bus system for the control of distributed module in the multiplexed network. Therefore, this has high reliability and flexibility in the overall control system implementation. This paper proposes an integrated system with high reliability and stability for control of various car signal, and evaluates the effectiveness of the system using the actual implementation. For these purposes, after a brief of the main features of the CAN will be addressed, this paper presents the result of development of the integrated hardware system and overall control program.

  • PDF

A Study on Development for Multiplexing of CAR Network with Controller Area Network (CAN) Communication Protocol (Controller Area Network (CAN) 통신 프로토콜을 사용한 자동차 Network의 다중화 기법의 개발에 관한 연구)

  • 정차근
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.29-32
    • /
    • 2001
  • This paper describes a development of the integrated controller system for car electrical signal control with CAN communication protocol. The CAN protocol is a robust serial bus system for the control of distributed module in the multiplexed network. After a brief of the main features of the CAN will be addressed, this paper presents the result of the development of the integrated hardware system overall control program.

  • PDF

Design and Development of Automatic Maneuvering Controller Using DGPS (DGPS를 이용한 자동 운항 제어기 설계 및 개발)

  • Kim, Ki-Young;Lee, Myoung-Il;Heo, Seok;Kwak, Moon-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.850-855
    • /
    • 2006
  • This is concerned with the development and design of automatic maneuvering system using Differential Global Positioning System(DGPS). To achievement of autonomous maneuvering controller for giant ship, first, we investigated automatic maneuvering controller using DGPS in motor car. The sensors are configured with DGPS and digital compass. We calculated velocity and steering angle of motor car based on sensor signal. To design the controller, we derived the bicycle model and developed critically damped controller. The critically damped controller can be tracing previously appointed position in the fastest time. We are used a laptop computer to realize and the control algorithm is programmed by visual basic software. The obtained experimental results from developed system show unmanned motor car is good tracing planed positions. Hence, the system is looking forward to use the autonomous maneuvering control fur giant ship.

Development of High Speed Digital Signal Processing Unit for Active Control of Noise Fields in Passenger Car (자동차 실내소음의 능동제어를 위한 고속 이산 신호처리 장치 개발)

  • 김인수;이강모;허현무;홍석윤
    • Journal of KSNVE
    • /
    • v.6 no.2
    • /
    • pp.205-214
    • /
    • 1996
  • Active noise control(ANC) requires the full capability of a modern digital signal processing module. This paper describes the digital signal processing unit which is designed for ANC of noise fields in passenger car. System hardware is designed to allow software controlled versatility as well as fully qutomatic operation. The developed system is provided with the ability to be self-operated except the case of upload/download of data and program between the personal computer and the system memory. Experimental results are presented to demonstrate ANC performance of noise fields in lightly damped enclosure and passenger car.

  • PDF

Analyzing of connected car vulnerability and Design of Security System (커네티트 카의 취약점 분석 및 보안 시스템 설계)

  • Kim, Tae-Hyoung;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.241-243
    • /
    • 2016
  • In the Past, Trend of car security was Physical Something like doorlock system, and The Generation did not have skills connecting External devices. Through Car Development is up, that trend of car security Changed Physical Security to Intelligence Security. This Changes give a chance to hackers to attack this system. This System use CAN(Controller Area Network) Protocol which have three vulnerabilities. First, ID Spoofing, Twice, D - Dos Attack, Third, Android Application Injected Modern cars have many ECU(Electronic Control Unit) to control devices like Engine ON/OFF, Door Lock Handling, and Controlling Handle. Because CAN Protocol spread signal using broadcast, Hackers can get the signal very easily, and Those often use Mobile devices like Android or IOS to attack this system. if bluetooth signal is spread wide, hackers get the signal, and analysis the bluetooth data, so then They makes certain data to attack ECU, they send the data to ECU, and control ECU installed car. so I suggest that I will prevent this attack to make Auth system and prevent this attack in end of Android.

  • PDF

A CAN Signal Gateway Design for Car Body Networks (차량차체 네트워크에서 CAN 신호 게이트웨이 설계)

  • Han, Jun-Soo;Kang, Ki-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.6
    • /
    • pp.524-531
    • /
    • 2010
  • The automobile networks consist of the communication bus systems which become independent and heterogeneous each other. Most often, the CAN buses are implemented in a car in order to connect all the electronic control units in various ways. Thus, some gateways are necessary for exchanging the useful information between electronic control units on the buses. The automobile body networks group is divided into two kinds on a large scale, namely the low-speed bus and the high-speed bus. To interchange messages between the two, a CAN signal gateway is designed and implemented in a miniature scale. A network analyzer (called "Vehicle spy") and an oscilloscope monitor network situation to confirm the due operation of CAN signal gateway. The efficiency of the designed gateway is evaluated. The more message thread increased, the more efficiency decreased.

Nonlinear adaptive control of a quarter car active suspension (1/4 차 능동현가계의 비선형 적응제어)

  • Kim, Eung-Seok
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.582-589
    • /
    • 1996
  • In this paper, an adaptive control problem of a hydraulic actuator for vehicle active suspension controller is divided into two parts: the inner loop controller and the outer loop controller. Inner loop controller, which is a nonlinear adaptive controller, is designed to control the force generated by the nonlinear hydraulic actuator acting under the effects of Coulomb friction. For simplicity of designing a nonlinear controller, the spool valve dynamics of a hydraulic actuator is reduced using a singular perturbation technique. The estimation error signal used to an indirect parameter adaptation is calculated without a regressor filtering. The absolute velocity of a sprung mass will be damped down by its negatively proportional term(sky-hook damper) adopted as an outer loop controller. Simulation results are presented to show the importance of controlling the actuator force and the validity of the proposed adaptive controller. (author). refs., figs. tab.

  • PDF

A Controller Design for Semi-active Suspension System Using Wavelet Treasform and Evolution Strategy (웨이브릿 변환과 진화전략에 의한 반능동 현가장치의 제어기 설계)

  • Kim, Dae-Jun;Kim, Han-Soo;Jeon, Hyang-Sig;Choi, Young-Kiu;Kim, Sung-Shin
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.3
    • /
    • pp.120-129
    • /
    • 2001
  • A two-degree-of-freedom quarter-car model is used as the basis for LQ and the proposed controller design for a semi-active suspension. The LQ controller results in the best rms performance trade-offs(as defined by performance index) between ride, handling and packaging requirements. In LQ controller, however, the conflict between road holding and ride comfort remains. The adaptive semi-active suspension control based on the road frequency are introduced in this paper. With this method, the trade-off between road holding and ride comfort can be relaxed. The road frequency is estimated by wavelet transform if rattle space signal. The simulation results show that the proposed controller is superior to the conventional LQ controller.

  • PDF

Development of a Traffic Signal Controller for the Tri-light Traffic Signal (3구신호등 제어용 교통신호제어기 개발)

  • Han, Won-Sub;Gho, Gwang-Yong;Heo, Nak-Won;Lee, Chul-Kee;Ha, Dong-Ik;Lee, Byung-Cheol
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.5
    • /
    • pp.49-58
    • /
    • 2010
  • The traffic signal controllers being used in the domestic currently are being manufactured based on the korean national police standard which was developed for controlling the quad-light traffic signal having the red, yellow, left-turn arrow, and green lights. But according to the national policy for the traffic operation, they have to be changed to be able to switch the tri-light signal having red, yellow and green lights. In this study, a new tri-light traffic signal controller was designed and developed by the way improving the Signal Control Unit of the existing quad-light standard traffic controller. The Load Signal Unit(LSU) was improved to output 6 signals which are the two assemblies of three signal indications having the red, yellow, and green lights. To enough traffic signals output to control each directional movements and the various transport modes which are car, bus, bike, and pedestrian etc., the connector bus system was designed to be able to accommodate maximum 96 signals outputs being constructed by 16 LSUs. Flasher device was developed to be able to support maximum 32 red signals. In the software, the communication protocol between traffic control center and the traffic signal controller was improved and new signal map code values were defined for the developed LSU controlling the quad-light traffic signal. A model of the quad-light traffic signal controller developed and was tested three operations, protocol-operation, remote-command and control-mode. The test result operated all of them successfully.

A Control Algorithm Suitable for High-speed Response Battery Charging System for Elevator Car (승강기 Car용 고속응성 배터리 충전시스템에 적합한 제어알고리즘)

  • Lee, Jung-Hwan;Hwangbo, Chan;Park, Sung-Jun;Park, Seong-Mi;Ko, Jae-Ha
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1071-1081
    • /
    • 2022
  • As the demand for high-rise buildings increases, the demand for high-speed elevators is also increasing. In order to make a high-speed elevator, a method is needed to reduce the weight of the elevator's components, which is a constraint on the increase in speed. As a measure to reduce the weight, it is possible to remove the traveling cable for power and signal supply. Since the weight of the traveling cable varies depending on the position of the carriage, it is difficult to compensate the weight using the counter weight. The power supply is a structure in which a brush-rail type power input terminal is installed in the elevator hoistway to receive power in a contact-type manner while the carriage is moving. If a small-capacity ESS is installed in a passenger car, power can be supplied uninterruptedly inside the passenger car. A small-capacity ESS charging system to be applied to such an elevator system is required to perform several functions. First, the passenger Car must be able to charge as much as possible even during high-speed operation. A control algorithm with high responsiveness is required because charging starts and ends repeatedly by the partially installed input power stage. In addition, if the input-side line impedance is large due to the structure of the system and the response characteristic is increased, the stability of the system may be lowered. Accordingly, in this paper, we propose a control algorithm that has a stable steady-state output while having a fast response in a transient state. To verify the proposed control algorithm, simulation was conducted using PSIM, and the performance of the controller was verified by manufacturing a prototype buck conveter charger.