• Title/Summary/Keyword: car noise

Search Result 657, Processing Time 0.029 seconds

Identification of Dynamic Joint Characteristics Using a Multi-domain FRF- based Substructuring Method (전달함수 다중합성법을 이용한 진동시스템의 결합부 특성값 동정)

  • 이두호;황우석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.635-644
    • /
    • 2004
  • A method of identifying structural parameters such as stiffness and damping coefficients at interfacial points of vibro-acoustic systems is suggested using an optimization technique. To identify the parameters using a numerical optimization algorithm, cost functions are defined. The cost function should be zero at the correct parameter values. To minimize the cost functions using an optimization technique, a design sensitivity analysis procedure is developed in the framework of the multi-domain FRF-based substructuring method. As a numerical example, a ladder-like structure problem is introduced. With known parameter values and different initial guesses of the parameters, convergence characteristics to the exact value are compared f3r the three cost functions. Investigating the contours of the cost functions, we find the first cost function has the largest convergent region to the correct value. As another practical problem, stiffnesses of engine mounts and bushings in a passenger car are identified. The numerical examples show that the proposed method is efficient and accurate far realistic problems.

  • PDF

Identification of Dynamic Joint Characteristics Using a Multi-domain FRF-based Substructuring Method (전달함수 다중합성법을 이용한 진동시스템의 결합부 특성값 추정)

  • 황우석;이두호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.6
    • /
    • pp.536-545
    • /
    • 2004
  • A method of identifying structural parameters such as stiffness and damping coefficients at interfacial points of vibro-acoustic systems is suggested using an optimization technique. To identify the parameters using a numerical optimization algorithm, cost functions are defined. The cost function should be zero at the correct parameter values. To minimize the cost functions using an optimization technique, a design sensitivity analysis procedure is developed in the framework of the multi-domain FRF-based substructuring method. As a numerical example, a ladder-like structure problem is introduced. With known parameter values and different initial guesses of the parameters, convergence characteristics to the exact value are compared for the three cost functions. Investigating the contours of the cost functions, we find the first cost function has the largest convergent region to the correct value. As another practical problem, the stiffnesses of engine mounts and bushings in a passenger car are identified. The numerical examples show that the proposed method is efficient and accurate for realistic problems.

Analysis of Characteristics of Body Vibrations for Korean High Speed Train (한국형 고속전철의 차체 진동특성 분석)

  • 김영국;박찬경;김석원;박태원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.7
    • /
    • pp.539-547
    • /
    • 2003
  • The prototype of Korean high speed train(KHST), composed of two power cars, two motorized cais and three trailer cars, has been designed, fabricated and tested. In this paper. the body vibration has been reviewed from the viewpoint of the vehicle's safety, the ride comfort and the vibration limits for components and sub-assemblies mounted on the car-body using by analytical method and experimental method. The on-line test of KHST has been tarried out up to 260 ㎞/h in the KTX line and the results of the on-line test show that KHST has no problems in the vehicle's safety. the comfort ride and the vibration limits at this speed. And the characteristics of body vibrations has been Predicted at 300 ㎞/h and 350 ㎞/h by fitting curve about the measured acceleration signals.

A Study on Developing Sound Quality Index of Car Door Latch and Improving Sound Quality by Changing Door Latch Assembly Design (자동차 도어 랫치의 음질 지수 개발 및 단품 개선을 통한 음질 향상 연구)

  • Jo, Hyeonho;Sung, Weonchan;Kim, Seonghyeon;Park, Dongchul;Kang, Yeon June
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.9
    • /
    • pp.614-619
    • /
    • 2015
  • The purpose of this study is that developing the index which evaluate sound quality of door latch and improving its sound quality through that results. For that, various operating sound of door latch was used for jury test. Loudness and sharpness related metrics are dominant in sound quality index we developed. This research investigate the main transfer path of its operating sound through sound field visualization and get conclusion that could reduce the impact sound of door latch. Therefore, we could verify sound quality improvement of modified product by using sound quality index.

Performance Evaluation of a Semi-active Vehicle Suspension Using Piezostack Actuator Valve (압전작동기 밸브를 이용한 반능동 차량현가장치의 성능 고찰)

  • Han, Chulhee;Yoon, Gun-Ha;Park, Young-Dai;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.82-88
    • /
    • 2016
  • This paper proposes a new type of semi-active direct-drive valve(DDV) car suspension system using piezoelectric actuator associated with displacement amplifier. As a first step, controllable piezoelectric DDV damper is designed and governing equation of a quarter-vehicle suspension system consisting of sprung mass, spring, tire and the piezostack DDV damper is constructed. After deriving the equations of the motion, in order to control spool displacement and damping force the skyhook controller is designed and applied. The performance evaluation of the proposed semi-active suspension system is conducted with different displacement of spool. Then, the ride comfort analysis is undertaken in time domain with bump road profile.

A Study on Optimal Spot-weld Layout Design of the Car Body Structure Using Topology Optimization (위상최적설계를 이용한 차체 점용접 배치 최적화 연구)

  • Kim, S.R.;Lee, C.W.;Kim, Mun-Yeong;Kim, C.M.;Yim, H.J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.361-366
    • /
    • 2012
  • In this paper, we propose the efficient technique that reduces the number of spot-welds and increases the structural rigidity by using the topology optimization technique. Eigen value analysis is used to evaluate the rigidity of the optimized model. As a first step, the topology optimization is performed to find optimal spot-weld distributions. In this study, the design objective is to maximize the weighted frequencies. The volume fractions of the weld components are used as design constraints, and also the densities of each element in the individual design space are used as design variables. And then, to consider the possibility of spot-weld failure, the contribution rate analysis was performed by using the orthogonal array method of DOE. The spot-welds in the rear panel part are reinforced according to estimation results of the contribution rate analysis. Finally, we obtained optimized spot-weld layout model which has the reduced number of spot-welds and the improved dynamic stiffness.

  • PDF

Experimental Study on Subjective Evaluation of Car Interior Sound Quality (승용차 내부소음의 음질평가 실험연구)

  • 최병호;아우구스트쉬크
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.177-182
    • /
    • 2003
  • This study is directed toward determining the number and characteristics of psychologically meaningful perceptual dimensions required for assessing the sound Ouaiity with respect to vehicle interior and/or exterior noises. and toward identifying the acoustical or psychoacoustical bases underlying the perception. By nonmetric MDS and clustring analysis of sound quality data sets on our own, of critical importance are two perceptual dimensions for which subjective verdicts can be interpreted as loudness and sharpness. The perceptual dimensions based upon similarity judgments could be accounted for 48% and 24% of the variance. each of which might be a match for the acoustic parameter "A-weighted maximum pressure level"(r= .85) and for the psychoacoustic parameter "sharpness" (r= .65), respectively. On the other hand, the perceptual dimensions based upon preference ratings could explain 66% and 10% of the variance. where the acoustic parameter "A-weighted maximum pressure leve"(r= .92) might be taken to be a best predictor, but sharpness appeared to be less suitable for the description of Preference behavior. Linked to the results, the problems of quantitative modelling of subjective sound quality evaluation and also of implementing corresponding cognitive combination rule for technical and industrial applications, say having "winner-sound qualify" according to preference criteria will be shortly in discussion.

  • PDF

Improvement of Dynamic Characteristics of an Optical Image Stabilizer in a Compact Camera (초소형 카메라 흔들림 보정장치의 동특성 개선)

  • Song, Myeong-Gyu;Son, Dong-Hun;Park, No-Cheol;Park, Kyoung-Su;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.2
    • /
    • pp.178-185
    • /
    • 2011
  • Optical image stabilization is a device to compensate the camera movement in the exposure time. The compensation is implemented by movable lens or image sensor that adjusts the optical path to the camera movement. Generally, the camera is moved by a handshake, thus the handshake is considered as an external disturbance. However, there are many other vibrations such as car and train vibration. In this paper, the optical image stabilization system in high frequency region is presented. Notch filter and lead compensator are designed and applied to improve the stability without changing the actuator. To verify the performance of the optical image stabilization system in high frequency region, the experiment equipment with moving object is established. It is confirmed that the opticalimage stabilization system does not diverge at the resonance frequency.

Ride Comfort Evaluation of Electronic Control Suspension Using a Magneto-rheological Damper (MR 댐퍼를 이용한 전자제어 현가장치의 승차감 평가)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.463-471
    • /
    • 2013
  • This paper presents design and control of electronic control suspension(ECS) equipped with controllable magnetorheological(MR) damper for passenger vehicle. In order to achieve this goal, a cylindrical type MR fluid damper that satisfies design specification of a middle-sized commercial passenger vehicle is proposed. After manufacturing the MR damper with design parameters, their field-dependent damping forces are experimentally evaluated and compared with those of a conventional damper. A quarter-vehicle MR ECS system consisting of sprung mass, spring, tire, controller and the MR damper is established in order to investigate the ride comfort performances. On the basis of the governing equation of motion of the suspension system, five control strategies(soft, hard, comfort, sport and optimal mode) are formulated. The proposed control strategies are then experimentally realized with the quarter-vehicle MR ECS system. Control performances such as vertical acceleration of the car body and tire deflection are evaluated in frequency domains on random road condition. In addition, performance comparison of WRMS(weighted root mean square) of the quarter-vehicle MR ECS system on random road are undertaken in order to investigate ride comfort characteristics.

Vibrational Characteristics of an End Beam of a Freight Cal- on the Taebaek Line (태백선을 주행하는 화차 엔드빔의 진동특성에 관한 연구)

  • 문경호;홍재성;이동형;서정원;함영삼
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.962-967
    • /
    • 2004
  • A bogie is the device that connects a car body and wheel sets of a rail vehicle. It is the critical component that determine:; the running safety, The bogie consists of a frame, suspensions, brakes and wheel sets. Various analyses including a numerical simulation using a finite element method, a static load test, a fatigue test, ai)d r running test should be carried out to design the bogie. However cracks have been found at some end beams of the bogies mounted on the freight cars running with the high speed. The cracks of the end beam results in deterioration of the brake performance an the running safety, A new design has been suggested to solve this problem by ROTEM company and it's performance has been tested in this paper. Numerical simulations and dynamic tests are carried out to figure out the causes of cracks in the conventional bogie, and the vibrational characteristics of the improved bogie are compared with those of the conventional one.