• Title/Summary/Keyword: capsid protein

Search Result 122, Processing Time 0.023 seconds

Characterization of rock bream (Oplegnathus fasciatus) fin cells and its susceptibility to different genotypes of megalocytiviruses

  • Jeong, Ye Jin;Kim, Young Chul;Min, Joon Gyu;Jeong, Min A;Kim, Kwang Il
    • Journal of fish pathology
    • /
    • v.34 no.2
    • /
    • pp.149-159
    • /
    • 2021
  • Genus Megalocytivirus cause red sea bream iridoviral disease (RSIVD) and scale drop disease (SDD). Based on the phylogeny of the major capsid protein (MCP) and adenosine triphosphatase (ATPase) genes, megalocytiviruses except for SDD virus (SDDV) could be three different genotypes, red sea bream iridovirus (RSIV), infectious spleen and kidney necrosis (ISKNV), and turbot reddish body iridovirus (TRBIV). In this study, primary cells derived from the caudal fin of rock bream (Oplegnathus fasciatus) grew at 25℃ in Leibovitz's medium supplemented with 10% (v/v) fetal bovine serum and primocin (100 ㎍/mL). Rock bream fin (RBF) cells exhibited susceptibility to infections by different genotypes of megalocytiviruses (RSIV, ISKNV and TRBIV) with the appearance of cytopathic effects with an increase in the viral genome copy number. Furthermore, compared to grunt fin (GF) cells, even though 10 times lower number of RSIV genome copies were inoculated in RBF cells, viral genome copy number produced on RBF cells were 44 times higher than that of GF cells at 7 d post-inoculation. As the isolated RBF cells are sensitive to different genotypes of megalocytiviruses (RSIV, ISKNV and TRBIV), they can be used for future studies regarding in vitro viral infection and subsequent diagnosis.

Characterization of Prophages in Leuconostoc Derived from Kimchi and Genomic Analysis of the Induced Prophage in Leuconostoc lactis

  • Kim, Song-Hee;Park, Jong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.333-340
    • /
    • 2022
  • Leuconostoc has been used as a principal starter in natural kimchi fermentation, but limited research has been conducted on its phages. In this study, prophage distribution and characterization in kimchi-derived Leuconostoc strains were investigated, and phage induction was performed. Except for one strain, 16 Leuconostoc strains had at least one prophage region with questionable and incomplete regions, which comprised 0.5-6.0% of the bacterial genome. Based on major capsid protein analysis, ten intact prophages and an induced incomplete prophage of Leu. lactis CBA3626 belonged to the Siphoviridae family and were similar to Lc-Nu-like, sha1-like, phiMH1-like, and TPA_asm groups. Bacterial immunology genes, such as superinfection exclusion proteins and methylase, were found on several prophages. One prophage of Leu. lactis CBA3626 was induced using mitomycin C and was confirmed as belonging to the Siphoviridae family. Homology of the induced prophage with 21 reported prophages was not high (< 4%), and 47% identity was confirmed only with TPA_asm from Siphoviridae sp. isolate ct3pk4. Therefore, it is suggested that Leuconostoc from kimchi had diverse prophages with less than 6% genome proportion and some immunological genes. Interestingly, the induced prophage was very different from the reported prophages of other Leuconostoc species.

EA-D p45-IgG as a Potential Biomarker for Nasopharyngeal Carcinoma Diagnosis

  • Chen, Hao;Luo, Yao-Ling;Zhang, Lin;Tian, Li-Zhen;Feng, Zhi-Ting;Liu, Wan-Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7433-7438
    • /
    • 2013
  • Aim: To identify new biomarkers for NPC diagnosis with an anti-EBV Western blot test kit. Methods: Serum samples from 64 NPC patients and healthy subjects with four specific VCA-IgA/EA-IgA profiles were tested with an anti-EBV Western blot test kit from EUROIMMUN AG. Proteins were quantified with scores of intensity visually assigned to the protein bands. The markers which showed statistical differences between the NPC and non-NPC subjects were further evaluated in another 32 NPC patients and 32 controls in comparison with established biomarkers including VCA-IgA, EA-IgA, EBV-related protein IgG, and EBV DNA. Results: Among the markers screened, EA-D p45-IgG showed a statistically significant difference (p < 0.05) between NPC and non-NPC subjects with VCA-IgA positivy. In 32 VCA-IgA positive NPC patients and 32 control subjects, the diagnostic accuracy of EA-D p45-IgG was 78.1% with a positive predictive value of 77.8% and a negative predictive value of 78.6%. In the verification experiment, the specificity and sensitivity of EA-D p45-IgG were 75.0% and 90.6 %, respectively. Conclusions: EA-D p45-IgG might be a potential biomarker for NPC diagnosis, especially among VCA-IgA positive subjects.

Antiviral Activity of Hederasaponin B from Hedera helix against Enterovirus 71 Subgenotypes C3 and C4a

  • Song, JaeHyoung;Yeo, Sang-Gu;Hong, Eun-Hye;Lee, Bo-Ra;Kim, Jin-Won;Kim, JeongHoon;Jeong, HyeonGun;Kwon, YongSoo;Kim, HyunPyo;Lee, SangWon;Park, Jae-Hak;Ko, Hyun-Jeong
    • Biomolecules & Therapeutics
    • /
    • v.22 no.1
    • /
    • pp.41-46
    • /
    • 2014
  • Enterovirus 71 (EV71) is the predominant cause of hand, foot and mouth disease (HFMD). The antiviral activity of hederasaponin B from Hedera helix against EV71 subgenotypes C3 and C4a was evaluated in vero cells. In the current study, the antiviral activity of hederasaponin B against EV71 C3 and C4a was determined by cytopathic effect (CPE) reduction method and western blot assay. Our results demonstrated that hederasaponin B and 30% ethanol extract of Hedera helix containing hederasaponin B showed significant antiviral activity against EV71 subgenotypes C3 and C4a by reducing the formation of a visible CPE. Hederasaponin B also inhibited the viral VP2 protein expression, suggesting the inhibition of viral capsid protein synthesis.These results suggest that hederasaponin B and Hedera helix extract containing hederasaponin B can be novel drug candidates with broad-spectrum antiviral activity against various subgenotypes of EV71.

High-Level Production of Human Papillomavirus (HPV) Type 16 L1 in Escherichia coli

  • Bang, Hyun Bae;Lee, Yoon Hyeok;Lee, Yong Jae;Jeong, Ki Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.356-363
    • /
    • 2016
  • Human papillomavirus (HPV), a non-enveloped, double-stranded DNA tumor virus, is a primary etiological agent of cervical cancer development. As a potential tool for prophylactic vaccination, the development of virus-like particles (VLPs) containing the HPV16 L1 capsid protein is highly desired. In this study, we developed a high-level expression system of the HPV16 L1 in Escherichia coli for the purpose of VLP development. The native gene of HPV16 L1 has many rare codons that cause the early termination of translation and result in the production of truncated forms. First, we optimized the codon of the HPV16 L1 gene to the preferable codons of E. coli, and we succeeded in producing the full-size HPV16 L1 protein without early termination. Next, to find the best host for the production of HPV16 L1, we examined a total of eight E. coli strains, and E. coli BL21(DE3) with the highest yield among the strains was selected. With the selected host-vector system, we did a fed-batch cultivation in a lab-scale bioreactor. Two different feeding solutions (complex and defined feeding solutions) were examined and, when the complex feeding solution was used, a 6-fold higher production yield (4.6 g/l) was obtained compared with that with the defined feeding solution.

Extract of Linum usitatissimum L. inhibits Coxsackievirus B3 Replication through AKT Signal Modulation (아마인 추출물의 AKT 신호 조절을 통한 콕사키바이러스 증식억제)

  • Shin, Ha-Hyeon;Moon, Sung-Jin;Lim, Byung-Kwan;Kim, Jin Hee
    • Korean Journal of Pharmacognosy
    • /
    • v.49 no.4
    • /
    • pp.291-297
    • /
    • 2018
  • Coxsackievirus B3 (CVB3) is a very well-known causative agent for viral myocarditis and meningitis in human. However, the effective vaccine and therapeutic drug are not developed yet. CVB3 infection activates host cell AKT signaling. Inhibition of AKT signaling pathway may attenuate CVB3 replication and prevent CVB3-mediate viral myocarditis. In this study, we determined antiviral effect of the selected natural plant extract to develop a therapeutic drug for CVB3 treatment. We screened several chemically extracted natural compounds by using HeLa cell-based cell survival assay. Among them, Linum usitatissimum L. extract was selected for antiviral drug candidate. L. usitatissimum extract significantly decreased CVB3 replication and cell death in CVB3 infected HeLa cells with no cytotoxicity. CVB3 protease 2A induced eIF4G1 cleavage and viral capsid protein VP1 production were dramatically decreased by L. usitatissimum extract treatment. In addition, virus positive and negative strand genome amplification were significantly decreased by 1 mg/ml L. usitatissimum extract treatment. Especially, L. usitatissimum extract was associated with inhibition of AKT signal and maintain mTOR activity. In contrast, Atg12 and LC3 expression were not changed by L. usitatissimum extract treatment. In this study, the potential AKT signal inhibitor, L. usitatissimum extract, was significantly inhibited viral genome replication and protein production by inhibition of AKT signal. These results suggested that L. usitatissimum extract is a novel therapeutic agent for treatment of CVB3-mediated diseases.

In Vitro Expression and Antibody Preparation of Rice black-streaked dwarf virus Coat Protein Gene (벼검은줄오갈병바이러스 외피단백질 유전자 단백질 발현과 항혈청 제작)

  • Lee, Bong Choon;Cho, Sang-Yun;Bae, Ju Young;Kim, Sang Min;Shin, Dong Bum;Kim, Sun Lim
    • Research in Plant Disease
    • /
    • v.22 no.1
    • /
    • pp.32-37
    • /
    • 2016
  • In this work, major outer capsid protein (P10) encoded by genome segment S10 of Rice black-streaked dwarf virus (RBSDV) was expressed in Escherichia coli. Genomic dsRNA was extracted from RBSDV-miryang isolate infected rice plants. Based on the sequence of S10 (RBSDV-miryang, GenBank JX994211), a pair of S10 specific primers were designed and used to amplify the fragment encoding the N-part of P10. We amplified the partial gene (S10 1-834 nt) of RBSDV P10 (1-278 aa) by RT-PCR. Amplified RBSDV S10 (1-834 nt) was cloned into the expression vector pET32a (+). Recombinant RBSDV S10 (1-834 nt) was expressed in E. coli BL21(DE3) and purified by nickel-nitrilotriacetic acid (Ni-NTA) affinity column. We successfully obtained P10 partial protein of RBSDV and the purified protein was used to immunize rabbits. The resulting polyclonal antiserum specifically recognized RBSDV from infected plant in both Western blotting and enzyme-linked immunosorbent assay. In this study, we provide purified RBSDV P10 (1-278 aa), which would be good material for the serological study of RBSDV-miryang isolates.

Cholic Acid Attenuates ER Stress-Induced Cell Death in Coxsackievirus-B3 Infection

  • Han, Jae-Young;Jeong, Hae In;Park, Cheol-Woo;Yoon, Jisoo;Ko, Jaeyoung;Nam, Sang-Jip;Lim, Byung-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.109-114
    • /
    • 2018
  • Coxsackievirus Type B3 (CVB3) is an enterovirus that belongs to the Picornaviridae and causes various diseases such as myocarditis and hand-foot-mouth disease. However, an effective antiviral drug is still not developed. In this study, we looked for potential inhibitors of CVB3 replication by examining the survival of CVB3-infected HeLa cells. We detected an antiviral effect by cholic acid and identified it as a candidate inhibitor of CVB3 replication. Cholic acid circulates in the liver and intestines, and it helps the digestion and absorption of lipids in the small intestine. HeLa cells were cultured in 12-well plates and treated with cholic acid (1 and $10{\mu}g/ml$) and $10^6PFU/ml$ of CVB3. After 16 h post-infection, the cells were lysed and subjected to western blot analysis and RT-PCR. The production of the viral capsid protein VP1 was dramatically decreased, and translation initiation factor eIF4G1 cleavage was significantly inhibited by treatment with $10{\mu}g/ml$ cholic acid. Moreover, cholic acid inhibited ERK signaling in CVB3-infected HeLa cells. RT-PCR showed that the amounts of the CVB3 RNA genome and mRNA for the ER stress-related transcription factor ATF4 were significantly reduced. These results showed that cholic acid strongly reduced ER stress and CVB3 proliferation. This compound can be developed as a safe natural therapeutic agent for enterovirus infections.

Development of the Gene Therapy Vector for Targeting Ovarian Cancer Cells through ErbB Receptors (ErbB 수용체를 이용한 난소암세포 표적 유전자치료 벡터의 개발)

  • Joung, In-Sil;Bang, Seong-Ho
    • Korean Journal of Microbiology
    • /
    • v.47 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • Inefficiency of in vivo gene transfer using currently available vectors reflects a major hurdle in cancer gene therapy. Both viral and non-viral approaches have been described to improve gene transfer efficiency but suffer from a number of limitations. Here we tested an adenovirus carrying the small peptide ligand derived from heregulin${\beta}$ EGF-like domain onto fiber, the adenoviral capsid protein, to deliver transgene to ovarian cancer cells which overexpress ErbB, the cognate receptors for heregulin. The attachement of 53 amino acids to fiber didn't affect on the fiber's trimer structure that is critical for the viral entry to cells. The fiber-modified adenovirus can mediate entry and expression of a ${\beta}$-galactosidase into cancer cells in an increased efficiency compared the unmodified adenovirus. Particularly, the gene transfer efficiency was improved up to 5 times in OVCAR3 cells, an ovarian cancer cell line. Such transduction systems hold promise for delivering genes to ErbB receptor overexpressing cancer cells, and could be used for future cancer gene therapy.

Quantitative Changes of Plant Defense Enzymes in Biocontrol of Pepper (Capsicium annuum L.) Late Blight by Antagonistic Bacillus subtilis HJ927

  • LEE HYUN-JIN;PARK KEUN-HYUNG;SHIM JAE-HAN;PARK RO-DONG;KIM YONG-WOONG;CHO JEUNG-YONG;HWANGBO HOON;KIM YOUNG-CHEOL;CHA GYU-SUK;KRISHNAN HARI B.;KIM KIL-YONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1073-1079
    • /
    • 2005
  • To investigate plant protection, pathogenesis-related (PR) proteins and plant defense enzymes related to cell wall lignification were studied in pepper plants inoculated with antagonistic Bacillus subtilis HJ927 and pathogenic strain Phytophthora capsici. Phytophthora blight disease was reduced by $53\%$ in pepper roots when preinoculated with B. subtilis HJ927 against P. capsici. The activities of PR proteins (chitinase and ${\beta}$-1,3,-glucanase) and defense-related enzymes (peroxidase, polyphenoloxidase, and phenylalanine ammonia lyase) decreased in roots of B. subtilis+P capsid-treated plants, but increased in leaves with time. The decrease and increase were much greater in P. capsici-treated plants than in B. subtilis HJ927+P capsici-treated plants, although P. capsici-treated plants had more severe damage. Therefore, changes of enzyme activities do not seem to be directly related to plant protection. We suggest that the change of these enzymes in pathogen-treated plants may be related to plant response rather than to resistance against pathogen attacks.