• Title/Summary/Keyword: capillary pressure

Search Result 306, Processing Time 0.026 seconds

DEVELOPMENT OF A METHOD FOR CONTROLLING GAS CONCENTRATION FOR USE IN C.A EXPERIMENTS

  • Yun, H.S.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.662-669
    • /
    • 2000
  • Based on the viscous flow characteristics of gas through capillary tube, a simple and low cost system was developed for controlling gas concentration for use in C.A experiments. The gas flow rate through capillary tube had a linear relationship with pressure, $(length)^{-1}$ and $(radius)^4$ of capillary tube, which agreed well with Hagen-Poiseuille's law. The developed system could control the gas concentration in storage chamber within ${\pm}0.3%$ deviation compared to the preset concentration. The required time for producing target gas concentration in storage chamber was exactly predicted by the model used in this study, and it required much longer time than the calculated time which divided the volume of chamber by flow rate. Therefore, for producing target gas concentration as quickly as possible, it needs to supply higher flow rate of gas during the initial stage of experiment when gas concentration in storage chamber has not reached at target value. It appeared that the developed system was very useful for C.A experiments. Because one could decide a desired flow rate by the prediction model, control flow rate freely and easily by changing pressure in the pressure-regulating chamber and the accuracy was high.

  • PDF

Application of CFD-VOF Model to Autonomous Microfluidic Capillary System (마이크로 모세관 유동 해석을 위한 CFD-VOF 모텔 응용)

  • Jeong J.H.;Im Y.H.;Han S.P.;Suk J.W.;Kim Y.D.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.224-229
    • /
    • 2004
  • The objective of this work is not only to perform feasibility studies on the CFD (computational fluid dynamics) analysis for the capillary system design but also to provide an enhanced understanding of the autonomous capillary flow. The capillary flow is evaluated by means of the commercial CFD software of FLUENT, which includes the VOF (volume-of-fluid) model for multiphase flow analysis. The effect of wall adhesion at fluid interfaces in contact with rigid boundaries is considered in terms of static contact angle. Feasibility studies are first performed, including mesh-resolution influence on pressure profile, which has a sudden increase at the liquid/gas interface. Then we perform both 2D and 3D simulations and examine the transient nature of the capillary flow. Analytical solutions are also derived for simple cases and compared with numerical results. Through this work, essential information on the capillary system design is brought out. Our efforts and initial success in numerical description of the microfluidic capillary flows enhance the fundamental understanding of the autonomous capillary flow and will eventually pave the road for full-scale, computer-aided design of microfluidic networks.

  • PDF

Theoretical Analysis of the Pressure Drop in Loop Heat Pipe by Sintered Porous Wick Structure (다공성소결윅구조에 따른 루프 히트파이프에서 압력손실의 이론적 분석)

  • Lee, K.W.;Lee, W.H.;Park, K.H.;Lee, K.J.;Chun, W.P.;Ihn, H.M.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1225-1230
    • /
    • 2004
  • In this paper, the pressure drops were investigated according to the sintered porous wick structure in loop heat pipe(LHP) by theoretical analysis. LHP has the wick only in evaporator for the circulation of working fluid, so utilizes porous wick structure which pore diameter is very small for large capillary force. This paper investigates the effects of different parameters on the pressure drops of the LHP such as particle diameter of sintered porous wick, wick porosity, vapor line diameter, thickness of wick and heating capacity. Working fluid is water and the material of sintered porous wick is copper. According to the these different parameters, capillary pressure, pressure drop in wick were analized by theoretical design method of LHP.

  • PDF

Development of Ultra-High Pressure Capillary Reverse-Phase Liquid Chromatography/Tandem Mass Spectrometry for High-Sensitive and High-Throughput Proteomics

  • Kim, Min-Sik;Choie, Woo-Suk;Shin, Yong-Seung;Yu, Myeong-Hee;Lee, Sang-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.12
    • /
    • pp.1833-1839
    • /
    • 2004
  • Recently mass spectrometry and separation methods such as liquid chromatography have become major tools in the field of proteomics. In this report, we describe in detail our efforts to develop ultra-high pressure capillary reverse-phase liquid chromatography (cRPLC) and its online coupling to a mass spectrometer by a nanoelectrospray (nanoESI) interface. The RPLC system is constructed in house to deliver LC solvents at the pressure up to 20,000 psig, which is four times higher than conventional RPLC systems. The high operation pressure allows the efficient use of packed micro-capillary columns (50, 75 and 150 ${\mu}$m i.d., up to 1.5 m long). We will discuss the effect of column diameter on the sensitivity of cRPLC/MS/MS experiments and the utility of the developed technique for proteome analysis by its application in the analysis of proteome samples having different levels of complexity.

Mechanisms of Gas Permeation through Microporous Membranes - A Review (미세 다공막을 통한 기체 투과기구)

  • 황선탁
    • Membrane Journal
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 1997
  • A review is presented for various gas transport mechanisms through microporous membranes of both polymeric and inorganic materials. Different transport modes manifest depending on the pore size and the flow regime, which is a function of pressure, temperature, and the interaction between gas molecules and the pore walls. For microporous membranes whose pores are small and the internal surface area huge, the surface diffusion becomes a significant factor. If the pores become even smaller, then the transport mechanism will be more of an activated diffusion type. When conditions are right capillary condensation will take place to create an enormous capillary pressure gradient, which will greatly enhance the permeation flux. At the same time the capillary condensate of the heavier component may block the membrane pores denying the passage of the lighter gas molecules. All of these phenomena will influence the separation of mixtures.

  • PDF

Mechanisms of gas permeation through microporous membranes - A review

  • Hwang, Sun-Tak
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.09a
    • /
    • pp.1-13
    • /
    • 1995
  • A review is presented for various gas tranport mechanisms through microporous membranes of both polymeric and inorganic materials. Different transport modes manifest depending on the pore size and the flow regime, which is a function of pressure, temperature, and the inateraction between gas molecules and the pore walls. For microporous membranes whose pores are small and the intenal surface area huge, the surface diffusion becomes a significant factor. If the pores become even smaller, them the transport mechanism will be more of an activated diffusion type. When conditions are right capillary condensation will take place to create an enormous capillary pressure gradient, which will greatly enhance the permeation flux. At the same time the capillary condensate of the heavier component may block the membrane pores denying the passage of the lighter gas molecules. All of these phenomena will influence the separation of mixtures.

  • PDF

The Injection of PDLC Solution Mixture in a Reduced Pressure

  • Kim, Kang-Pil;Yang, Kee-Jeong;Kim, Dae-Hwan;Choi, Byeong-Dae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.524-526
    • /
    • 2007
  • Polymer dispersed liquid crystal (PDLC) films consist of micro-droplets of liquid crystals dispersed in a polymer matrix. To make wide area PDLC filled devices, it is necessary to develop reliable method of vacuum injection of PDLC solution instead of the capillary injection. However, well-known 2-ethylhexylacrylate (EHA), main element of a prepolymer, exhibits the volatility problems, when the PDLC solution is placed under the low pressure. In this study, we developed the vacuum injection process to fill a wide area cell. Experimental results indicate that the $V_{90}$(turn-on voltage) of the PDLC cell made by a vacuum injection method are lower than that of the PDLC cell made by a capillary injection method.

  • PDF

Development of simulation program for TXV and capillary tube performance analysis (감온 팽창밸브 및 모세관 성능 시뮬레이션 프로그램 개발)

  • 박봉수;한창섭
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.2
    • /
    • pp.170-180
    • /
    • 2000
  • The equation which is related to TXV performance was investigated. On the basis of this equation, the TXV simulation program was developed. Results of the developed TXV simulation program were proven by the experiment on the influence of pressure difference between TXV entrance and exit and equalizing pressure. Simulation results show very good agreement with experimental results, the RMS error between them was 1.83%. The capillary tube simulation program was made by the basic equation of fluid dynamics. Results of this program were proven by data which were experimented previously. The RMS error between simulation results and experimental results was 4.13% .

  • PDF

Investigation on the selection of capillary tube for the alternative refrigerant R-407C (대체냉매 R-407C의 모세관 선정에 관한 연구)

  • 김용환;김창년;박영무
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.1
    • /
    • pp.56-65
    • /
    • 1998
  • In this paper, experimental investigation of capillary tube performance for R-407C is performed. The experimental setup is made of real vapor-compression refrigerating system. In this study, mass flow rate is measured for capillary tubes of various diameter and length as inlet pressure and degree of subcooling are changed. These data are compared with the results of a numerical model. The mass flow rates of the numerical model are less than by 14% compared with the measured mass flow rates. It is found that mass flow rate and length for R-407c are less than those of R-22 under the same condition. Also based on this experimental study and the numerical model, a set of capillary tube selection charts for R-407C is constructed.

  • PDF

An Application of Non-linear Viscoelastic Model to Capillary Extrusion of Rubber Compounds (고무복합체의 모세관 압출에서 비선형 점탄성 모델의 적용)

  • Choi, S.H.;Lyu, M.Y.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.260-265
    • /
    • 2007
  • Rubber compounds have high viscoelastic property. One of the viscoelastic behaviors during profile extrusion is the swelling of extrudate. In this study, die swells of rubber compounds at the capillary die have been investigated through experiment and computer simulation. Experiments and simulations have been performed using fluidity tester and commercial CFD code, Polyflow respectively. Die swells of rubber compounds in a capillary die were predicted using non-linear differential viscoelastic model, Phan-Thien-Tanner(PTT) model for various relaxation times and relaxation modes. The results of simulation were compared with the experiments. Pressure and velocity distribution, and circulation flows at the comer of capillary die have been investigated through computer simulation. It is concluded that the PTT model successfully represented the amount of the die swell of rubber compounds for various relaxation times at different modes.