• Title/Summary/Keyword: capillary model

Search Result 246, Processing Time 0.023 seconds

The Simulation of Pore Size Distribution from Unsaturated Hydraulic Conductivity Data Using the Hydraulic Functions (토양 수리학적 함수를 이용한 불포화 수리전도도로부터 공극크기분포의 모사)

  • Yoon, Young-Man;Kim, Jeong-Gyu;Shin, Kook-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.407-414
    • /
    • 2010
  • Until now, the pore size distribution, PSD, of soil profile has been calculated from soil moisture characteristic data by water release method or mercury porosimetry using the capillary rise equation. But the current methods are often difficult to use and time consuming. Thus, in this work, theoretical framework for an easy and fast technique was suggested to estimate the PSD from unsaturated hydraulic conductivity data in an undisturbed field soil profile. In this study, unsaturated hydraulic conductivity data were collected and simulated by the variation of soil parameters in the given boundary conditions (Brooks and Corey soil parameters, ${\alpha}_{BC}=1-5L^{-1}$, b = 1 - 10; van Genuchten soil parameters, ${\alpha}_{VG}=0.001-1.0L^{-1}$, m = 0.1 - 0.9). Then, $K_s$ (1.0 cm $h^{-1})$ was used as the fixed input parameter for the simulation of each models. The PSDs were estimated from the collected K(h) data by model simulation. In the simulation of Brooks-Corey parameter, the saturated hydraulic conductivity, $K_s$, played a role of scaling factor for unsaturated hydraulic conductivity, K(h) Changes of parameter b explained the shape of PSD curve of soil intimately, and a ${\alpha}_{BC}$ affected on the sensitivity of PSD curve. In the case of van Genuchten model, $K_s$ and ${\alpha}_{VG}$ played the role of scaling factor for a vertical axis and a horizontal axis, respectively. Parameter m described the shape of PSD curve and K(h) systematically. This study suggests that the new theoretical technique can be applied to the in situ prediction of PSD in undisturbed field soil.

The Effect of Surfactant Therapy for Acute Lung Injury Induced by Intratracheal Endotoxin Instillation in Rats (기관내 내독소 투여로 유발된 흰쥐의 급성폐손상에서 surfactant의 치료효과)

  • Kang, Yun-Jung;Park, Yong-Bum;Jee, Hyun-Suk;Choi, Jae-Chol;Kim, Jae-Yeol;Park, In-Won;Choi, Byoung-Whui
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.4
    • /
    • pp.487-499
    • /
    • 2000
  • Background : Acute lung injury is an hypoxic respiratory failure resulting from damage to the alveolar-capillary membrane, which can be developed by a variety of systemic inflammatory diseases. In this study the therapeutic effects of intra-tracheal pulmonary surfactant instillation was evaluated in the intratracheal endotoxin induced acute lung injury model of a rat. Methods : Twenty Sprague-Dawley rats were divided into 4 groups, and normal saline (2 ml/kg, for group 1) or LPS (5 mg/kg, for group 2, 3, and 4) was instilled into the trachea respectively. Either normal saline (2 ml/kg, for group 1 & 2, 30 min later) or bovine surfactant (15 mg/kg, 30 min later for group 3, 5 hr later for group 5) was instilled into the trachea. The therapeutic effect of intratracheal surfactant therapy was evaluated with one chamber body plethysmography (respiratory frequency, tidal volume and enhanced pause), ABGA, BAL fluid analysis (cell count with differential, protein concentration) and pathologic examination of the lung. Results : Intratracheal endotoxin instillation increased the respiration rate decreased the tidal volume and int creased the Penh in all group of rats. Intratracheal instillation of surfactant decreased Penh, increased arterial oxygen tension, decreased protein concentration of BAL fluid and decreased lung inflammation at both times of administration (30 minute and 5 hour after endotoxin instillation). Conclusion : Intratracheal instillation of surfactant can be a beneficial therapeutic modality as discovered in the acute lung injury model of rats induced by intratracheal LPS intillation. It deserves to be evaluated for treatment of human acute lung injury.

  • PDF

Effect of Thyroid Hormone on the Ischemia-Reperfusion Injury in the Canine Lung (갑상선 호르몬이 잡견 폐장의 허혈-재관류 손상에 미치는 영향)

  • 김영태;성숙환
    • Journal of Chest Surgery
    • /
    • v.32 no.7
    • /
    • pp.637-647
    • /
    • 1999
  • Background: Ischemia-reperfusion injury is one of the major contributing causes of early graft failure in lung transplantation. It has been suggested that triiodothyronine (T3) may ameliorate ischemia-reperfusion injury to various organs in vivo and in vitro. Predicting its beneficial effect for ischemic lung injury, we set out to demonstrate it by administering T3 into the in situ canine ischemia-reperfusion model. Material and Method: Sixteen adult mongrel dogs were randomly allocated into group A and B. T3 $(3.6\mug/kg)$ was administered before the initiation of single lung ischemia in group B, whereas the same amount of saline was administered in group A. Ischemia was induced in the left lung by clamping the left hilum for 100 minutes. After reperfusion, various hemodynamic parameters and blood gases were analyzed for 4 hours while intermittently clamping the right hilum in order to allow observation of the injured left lung function. Result: Arterial oxygen partial pressure $(PaO_2)$ decreased 30 minutes after reperfusion and recovered gradually thereafter in both groups. In group B the decrease of $PaO_2$ was less marked than in group A. The recovery of $PaO_2$ was faster in group B than in group A. The differences between the two groups were statistically significant from 30 minutes after reperfusion $(125\pm34$ mmHg and $252\pm44$ mmHg, p<0.05) until the end of the experiment $(178\pm42$mmHg and $330\pm37$ mmHg, p<0.05). The differences in the arterial carbon dioxide pressure, airway pressure and lung compliance showed no statistical significance. The malondialdehyde (MDA) level, measured from the tissue obtained 240 minutes after reperfusion, was lower in group B $(0.40\pm0.04\mu$M) than in group A $(0.53\pm0.05\mu$M, p<0.05). The ATP level of group B $(0.69\pm0.07\mu$M/g) was significantly higher than that of group A $(0.48\pm0.07\mu$M/g, p<0.05). The microscopic exami nation revealed varying degrees of injury such as perivascular neutrophil infiltration, capillary hemorrhage and interstitial congestion. There were no differences in the microscopic findings between the two groups. CONCLUSION T3 has beneficial effects on the ischemic canine lung injury including preservation of oxygenation capacity, less production of lipid peroxidation products and a higher level of tissue ATP. These results suggest that T3 is effective in pulmonary allograft preservation.

  • PDF

Successful 20 hours Canine Allograft Preservation with new Solution Containing Triiodothyronine - Development of new lung preservation solution II - (삼요드티로닌을 포함한 폐보존액을 이용한 20시간 폐보존 - 새로운 폐 보존액의 개발 II -)

  • 성숙환;김영태;김주현
    • Journal of Chest Surgery
    • /
    • v.32 no.5
    • /
    • pp.413-421
    • /
    • 1999
  • Background: Ischemia reperfusion injury is known to contribute to the major causes of the early graft failure in lung transplantation. Triiodothyronine (T3) has been suggested to ameliorate ischemia reperfusion injury from both in vivo and in vitro experiments of various organs. Prospecting its beneficial effect for pulmonary allograft preservation, we made a new solution by adding T3 into the extracellular type dextran solution. Material and Method: Twelve adult mongrel dogs underwent left lung allotransplantation. Six donor dogs were flushed with the new solution(Group 1, n=6), and the remaining six were flushed with Euro-Collins solution to serve as controls(Group 2, n=6). Allografts were stored in each preservation solution for 20 hours at 4$^{\circ}C$. Left single lung transplantations were performed. The right pulmonary artery and the right main bronchus were clamped at 15 minutes after the reperfusion and maintained throughout the experiment to evaluate the transplanted left lung function. Result: Arterial carbon dioxide tension was better in group 1 than in group 2 throughout the experiment period and the difference was statistically significant at 2 hours after reperfusion(28.0${\pm}$3.0 mmHg and 53.1${\pm}$17.4 mmHg, p<0.05). The differences of arterial oxygen partial pressure, peak airway pressure and pulmonary vascular resistance showed no statistical significance. The malondialdehyde(MDA) level, measured from tissue obtained at 120 minutes after reperfusion showed no statistically significant difference. The tissue wet/dry ratio of group 1(649${\pm}$27 %) was significantly lower than that of group 2(686${\pm}$71 %, p<0.05). The microscopic examination revealed varying degrees of injury represented mainly by findings such as perivascular neutrophil infiltration, capillary hemorrhage and interstitial congestion. These findings were less severe in group 1 than those in group 2. Conclusion: The new solution demonstrated superior allograft preservation after 20 hour ischemia compared to Euro-Collins solution in canine single left lung transplantation model, these results suggest that T3 might be a promising agent for pulmonary allograft preservation.

  • PDF

Role of Endogenous Histamine on the Pathogenesis in the Endotoxin-Induced Acute Lung Injury (내독소로 유도되는 급성폐손상의 발병기전에서 내인성 히스타민의 역할)

  • Kim, Tae-Hyung;Kim, Eun-Kyung;Yoon, Ho Joo;Kim, Mi Jung;Choi, Jeoung Eun;Oh, Yeon Mok;Shim, Tae Sun;Lim, Chae Man;Lee, Sang Do;Kim, Woo Sung;Kim, Dong-Soon;Kim, Won Dong;Koh, Younsuck
    • Tuberculosis and Respiratory Diseases
    • /
    • v.54 no.1
    • /
    • pp.91-103
    • /
    • 2003
  • Background : Histamine is widely distributed in the lung. It increases capillary permeability and the P-selectin expression on vascular endothelial cell surfaces. We studied the role of endogenous histamine on the pathogenesis of endotoxin-induced acute lung injury (ALI) in rats. Methods: We instilled either normal saline (control group) or lipopolysaccharide (3 mg/Kg, LPS group) to tracheas of Sprague-Dawley rats. H1-receptor blocker (mepyramine, 10 mg/Kg, H1RB group), H2-receptor blocker (ranitidine, 10 mg/Kg, H2RB group), and H3-receptor blocker (thioperamide, 2 mg/Kg, H3RB group) were administered through vein or peritoneum along with intratracheal LPS administration. Statistical significance was accepted at p<0.05. Results : LPS increases the histamine level in BAL fluid significantly at 2 h after the treatment compared with control group. LPS significantly increases protein concentration, PMN cell count in bronchoalveolar lavage (BAL) fluid, and myeloperoxidase (MPO) activity in the lung tissue at 6 h compared to control group. PMN cell count in BAL fluid and MPO activity in lung tissue were significantly lower in H2RB-group compared to LPS-group. However, protein concentration in BAL fluid showed no significant differences between the LPS alone and LPS with histamine receptor blockade. Conclusions : Endogenous histamine might be involved in the recruitment of PMNs in LPS-induced ALI via H2 receptor. However, its role in ALI would not be significant in this model.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012 (설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwataik;Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Choi, Jong Min;Park, Jun-Seok;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.