• Title/Summary/Keyword: capacitive touch screen

Search Result 24, Processing Time 0.028 seconds

Preparation of Conductive Leather Gloves for Operating Capacitive Touch Screen Displays (정전용량방식 터치스크린에 작동하는 전도성 가죽장갑 소재의 제조)

  • Hong, Kyung Hwa
    • Fashion & Textile Research Journal
    • /
    • v.14 no.6
    • /
    • pp.1018-1023
    • /
    • 2012
  • Smartphone is integrated into the daily lives of all types of people not even young generation. A touch screen display is a primary input device of a smart phone, a tablet computer, etc. While there are many tough technologies in existence, resistive and capacitive are dominant and currently lead the touch screen panel industry. And a capacitive touch screen panel widely used in smart phones is coated with a material that stores electrical charges. In this study, we tried to manufacture gloves produced with electro-conducting leather as a tool to operate a touch panel screen. Therefore, electrically conductive materials, Polyaniline(PANI), Poly(3,4-ethylenedioxythiophene) (PEDOT), and Carbon nanotubes (CNT) were applied to the surface of leather to be used as a touching operator for capacitive touch screen panel. The leather samples were treated by simple painting method; firstly, they were painted with aqueous solution containing each of the electrically conductive materials and then dried. This cycle was repeated three times. Consequently, the treated leather samples showed electrical conductivity and reasonable working performance to the capacitive touch screen. And, PANI showed the best performance and highest electrical conductivity, and then PEDOT and, CNT in decreasing order. This is because the solubilities of PANI and PEDOT show higher than dispersibility of CNT. Thus, the concentration of conducting polymers was greater than that of CNT in the treating solutions.

Mixed-Mode Simulations of Touch Screen Panel Driver with Capacitive Sensor based on Improved Charge Pump Circuit (개선된 charge pump 기반 정전 센싱 회로를 이용한 터치 스크린 패널 드라이버의 혼성모드 회로 분석)

  • Yeo, Hyeop-Goo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.2
    • /
    • pp.319-324
    • /
    • 2012
  • This paper introduces a 2-dimensional touch screen panel driver based on an improved capacitive sensing circuit. The improved capacitive sensing circuit based on charge pump can eliminate the remaining charges of the intermediate nodes, which may cause output voltage drift. The touch screen panel driver with mixed-mode circuits was built and simulated using Cadence Spectre. Verilog-A models the digital circuits effectively and enables them to interface with analog circuits easily. From the simulation results, we can verify the reliable operations of the simple structured touch screen panel driver based on the improved capacitive sensing circuit offering no voltage drift.

Advancements in Capacitive Touch System and Stylus Technologies

  • Ha-Min Lee;Seung-Hoon Ko
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.5
    • /
    • pp.465-475
    • /
    • 2024
  • Due to changes in the form factor of display panels and touch screen panels in various devices, capacitive touch systems have evolved to address various issues such as low power consumption, noise immunity, and small chip size. Furthermore, some devices have applications that use a stylus. Since the stylus operates similarly to a finger touch, it encounters similar issues. Recent research trends focus on addressing key issues such as noise, which is primarily caused by the self-capacitor formed between the display cathode and the touch screen panel. In this paper, Various research papers discussing methods to eliminate external noise will be reviewed. These advancements enhance noise immunity in touch systems, making it easier to use thinner and more flexible panels. These progress make touch technology more versatile and reliable in various applications.

Multi-touch Recognition and Tracking for Self Capacitive TSP (자기정전용량 방식의 TSP에서 멀티터치 인식 및 추적)

  • Jung, Sung Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.136-140
    • /
    • 2014
  • This paper introduces a multi-touch recognition and tracking method for self capacitive TSP(Touch Screen Pannel). Self capacitive TSP recognizes finger touches by sensing capacitive change of ITO transparent conducting film arranged by rows and columns on the TSP pannel. They have some advantages such as high SNR, fast sensing, and simple touch processing, but have very difficulties for multi-touch processing. This disadvantage makes that the mutual capacitive TSPs, which have no such disadvantage, have been more widely used especially for multi-touch applications. However, since the other applications for remote control pad or recently developed wearable devises have only restrictive requirements for multi-touch, the disadvantage of self capacitive TSP is not a critical problem. In this paper, we first describe multi-touch recognition problems in self capacitive TSP and then propose how to overcome those problems and a tracking method of two touches when they are moving. Experimental results of our method showed that our algorithm works well in two touches.

Mixed-Mode Simulations of Touch Screen Panel Driver with Capacitive Sensor using Modified Charge Pump Circuit (Charge pump 기반 정전 센싱 회로를 이용한 터치스크린 패널 드라이버의 혼성모드 회로 분석)

  • Yeo, Hyeop-Goo;Jung, Seung-Min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.875-877
    • /
    • 2011
  • This paper introduces a touch screen panel driver using modified charge pump circuit. The touch screen panel driver is composed of an analog circuit part which senses a touch and a digital circuit which analyse the sensed signal. To verify the functions the touch screen panel driver, a mixed-mode circuit was built and simulated using Cadence Spectre. The digital circuits were modeled with Verilog-A in order to interface with the analog circuits and verify the functionalities of the driver with less simulation time. From the simulation results, we can verify the reliable operations of the simple structured touch screen panel driver which does not include an ADC.

  • PDF

Pointing position detection of capacitive touch screen panel using phase-difference method (위상차 방식을 사용한 용량방식 터치 스크린 패널의 접촉 위치 검출)

  • Jo, Yeong-Cheol;Jang, Rae-Hyeok;Gwon, Uk-Hyeon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.406-412
    • /
    • 1998
  • This paper describes a contact position detection method of a capacitive touch screen panel. The proposed method is composed of a circuited compensating algorithm generating an output signal having phase difference to an input signal associated with contact position, converts both input and output signals into digital waveform (5V logic), and calculates the phase difference. Finally, position information with the phase difference is obtained by using a low-cost microprocessor, which is convenient to compensate non-linearity error. The proposed method, that computes phase difference directly, has advantages in feasibility and cost because it minimizes the use of analog devices; rather, it utilizes, cost effective digital circuit. Analytical results are also given.

  • PDF

Design and Implementation of Tangible Interface Using Smart Puck System

  • Bak, Seon Hui;Lee, Jeong Bae;Kim, Jeong Ho;Lee, Hee-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.9
    • /
    • pp.47-53
    • /
    • 2015
  • In this paper, we propose a novel tangible interface system whose system does not use the expensive hardware is introduced. This proposed tangible interface is used on the table top capacitive multi touch-screen. The tangible interface apparatus which is called smart puck has sanguine arduino compatible board. The board has a Cds photo-sensing sensor and the EPP8266 WiFi module. The Cds sensor decodes the photometric PWM signals from the system and sends corresponding information to the system via TCP/IP. The system has a server called MT-Server to communicate with the smart pucks. The tangible interface shows reliable operation with fast response that is compatible to the expensive traditional devices in the market.

LCD Embedded Hybrid Touch Screen Panel Based on a-Si:H TFT

  • You, Bong-Hyun;Lee, Byoung-Jun;Lee, Jae-Hoon;Koh, Jai-Hyun;Takahashi, Seiki;Shin, Sung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.964-967
    • /
    • 2009
  • A new hybrid-type touch screen panel (TSP) has been developed based on a-Si:H TFT which can detect the change of both $C_{LC}$ and photo-current. This TSP can detect the difference of $C_{LC}$ between touch and no-touch states in unfavorable conditions such as dark ambient light and shadows. The hybrid TSP sensor consists of a detection area which includes one TFT for photo sensing and two TFTs for amplification. Compared to a single internal capacitive TSP or an optical sensing TSP, this new proposed hybrid-type TSP enables larger sensing margin due to embedding of both optical and capacitive sensors.

  • PDF

Implementation and Design of Handwritten Character Recognition Algorithm Using Touch Screen (터치스크린을 이용한 필기체 문자 인식 알고리즘 설계 및 구현)

  • Park, Sang-Bong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.141-146
    • /
    • 2014
  • This paper describes the implementation and algorithm of handwritten character recognition using mobile touch screen. The system is consisted of PXA320 processor, capacitive touch panel and QT4 interface. The proposed algorithm extracts pattern characteristics with straight, left circle, right circle on the inputting character. The definition of character is determined by 3-way tree searching method. The performance of proposed algorithm is verified using alphabet character. It is suitable to apply the mobile touch screen because of simple algorithm.

A Compact Low-Power Shunt Proximity Touch Sensor and Readout for Haptic Function

  • Lee, Yong-Min;Lee, Kye-Shin;Jeong, Taikyeong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.3
    • /
    • pp.380-386
    • /
    • 2016
  • This paper presents a compact and low-power on-chip touch sensor and readout circuit using shunt proximity touch sensor and its design scheme. In the proposed touch sensor readout circuit, the touch panel condition depending on the proximity of the finger is directly converted into the corresponding voltage level without additional signal conditioning procedures. Furthermore, the additional circuitry including the comparator and the flip-flop does not consume any static current, which leads to a low-power design scheme. A new prototype touch sensor readout integrated circuit was fabricated using complementally metal oxide silicon (CMOS) $0.18{\mu}m$ technology with core area of $0.032mm^2$ and total current of $125{\mu}A$. Our measurement result shows that an actual 10.4 inches capacitive type touch screen panel (TSP) can detect the finger size from 0 to 1.52 mm, sharply.