본 논문에서는 capacitance scaling 구조를 이용하여 짧은 locking 시간과 작은 fractional spur를 가지는 ${\Sigma}{\Delta}$ fractional-N PLL을 설계하였다. 루프필터의 실효 커패시턴스를 변화시키기 위하여 여러 개의 전하펌프를 이용해 서로 다른 경로로 커패시터에 전류를 공급하였다. 필터의 실효 커패시턴스는 동작상태에 따라 크기가 변하며 커패시터들은 하나의 PLL 칩에 집적화 할 수 있을 정도로 작은 크기를 가진다. 또한 PLL이 lock 되면 전하펌프 전류의 크기도 작아져 fractional spur의 크기도 작아진다. 제안된 구조는 HSPICE CMOS $0.35{\mu}m$ 공정으로 시뮬레이션 하였으며 $8{\mu}s$ 이하의 locking 시간을 가진다. PLL의 루프필터는 200pF, 17pF의 작은 커패시터와 $2.8k{\Omega}$의 저항으로 설계되었다.
The multi-dielectric layer SiO$_{2}$/Si$_{3}$N$_{4}$/SiO$_{2}$(ONO) is used to improve electrical capacitance and to scale down the memory device. In this paper, improvement of the capacitance by reducing the bottom oxide thickness in the nitride deposition with load lock(L/L) vacuum system is studied. Bottom oxide thickness under the nitride layer is measured by ellipsometer both in L/L and non-L/L systems. Both results are in the range of 3-10.angs. and 10-15.angs., respectively, independent of the nitride and top oxide thickness. Effective thickness and cell capacitance for SONOS capacitor are in the range of 50-52.angs. and 35-37fF respectively in the case of nitride 70.angs. in L/L vacuum system. Compared with non-L/L system, the bottom oxide thickness in the case of L/L system decreases while cell capacitance increases about 4 fF. The results obtained in this study are also applicable to ONO scaling in the thin bottom oxide region of memory stacked capacitor.
위상감지법(phase detector technique)은 세포의 막 캐패시턴스(membrane capacitance)를 실시간적으로 측정할 수 있는 유일한 방법이나 측정이 행해지는 동안 세포의 상태가 끊임없이 변화하기 때문에 피할 수 없는 측정오차가 존재한다. 본 연구는 이 오차의 근원을 분석하여 위상감지법의 실용한계를 규정하고자 하였다. 이론적 분석에 기초하여 다음과 같은 사실을 밝힐 수 있었다. 1) access conductance와 membrane conductance의 변화에 기인하는 측정오차를 줄이기 위해서는 초기 위상치를 올바로 선택하여야 한다. 2) 이 때 세포를 여기시키기 위해 인가하는 전압의 주파수를 알맞게 선택하여야 한다. 3) 그러나 초기 위상치가 정해진 이후의 위상 변화는 막 캐패시턴스의 측정에 큰 영향을 미치지 않는다. 4) 초기 위상을 적절히 선택하였다 하더라도 세포외 분비시 막 캐패시턴스가 크게 증가하는 경우에는 비례상수에 오차가 발생한다. 이 때 발생하는 오차는 측정기간 동안 비례상수를 되풀이하여(iteration) 보정함으로써 방지할 수 있다. 이상의 결과는 향후 위상감지법을 사용할 때 유용한 설용한계를 제공하리라 생각된다.
An, TaeYoon;Choe, KyeongKeun;Kwon, Kee-Won;Kim, SoYoung
JSTS:Journal of Semiconductor Technology and Science
/
제14권5호
/
pp.525-536
/
2014
Recently, the first generation of mass production of FinFET-based microprocessors has begun, and scaling of FinFET transistors is ongoing. Traditional capacitance and resistance models cannot be applied to nonplanar-gate transistors like FinFETs. Although scaling of nanoscale FinFETs may alleviate electrostatic limitations, parasitic capacitances and resistances increase owing to the increasing proximity of the source/drain (S/D) region and metal contact. In this paper, we develop analytical models of parasitic components of FinFETs that employ the raised source/drain structure and metal contact. The accuracy of the proposed model is verified with the results of a 3-D field solver, Raphael. We also investigate the effects of layout changes on the parasitic components and the current-gain cutoff frequency ($f_T$). The optimal FinFET layout design for RF performance is predicted using the proposed analytical models. The proposed analytical model can be implemented as a compact model for accurate circuit simulations.
A new voltage-scaled compensation pixel which employs 3 p-type poly-Si TFTs and 2 capacitors without additional control line has been proposed and verified. The proposed pixel does not employ the $V_{TH}$ memorizing and cancellation, but scales down the inevitable $V_{TH}$ variation of poly-Si TFT. Also the troublesome narrow input range of $V_{DATA}$ is increased and the $V_{DD}$ supply voltage drop is suppressed. In our experimental results, the OLED current error is successfully compensated by easily controlling the proposed voltage scaling effects.
본 논문에서는 다중 전하펌프를 이용하여 저항과 커패시턴스 크기를 변화시키는 구조의 새로운 위상고정루프를 제안하였다. 제안된 위상고정루프는 세 개의 전하펌프를 사용하여 루프필터의 실효 커패시턴스와 저항을 위상고정 상태에 따라 각 전하펌프의 전류량 크기와 방향 제어를 통해 증감시킬 수 있다. 이러한 구조는 좁은 대역폭과 작은 루프 필터 저항 값을 가능하게 하여 좋은 잡음 특성과 기준 주파수 의사 잡음 특성을 가지도록 한다. 제안된 위상고정루프는 3.3V $0.35{\mu}m$ CMOS 공정을 이용하여 제작되었다. 851.2MHz 출력 주파수에서 측정된 위상 잡음은 -105.37 dBc/Hz @1MHz이며, 기준 주파수 의사 잡음은 -50dBc이다. 측정된 위상고정시간은 $25{\mu}s$이다.
Kim, Kwan-Young;Jang, Jae-Man;Yun, Dae-Youn;Kim, Dong-Myong;Kim, Dae-Hwan
JSTS:Journal of Semiconductor Technology and Science
/
제10권2호
/
pp.134-142
/
2010
A comparative study on the trade-off between the drive current and the total gate capacitance in double-gate (DG) and triple-gate (TG) FinFETs is performed by using 3-D device simulation. As the first result, we found that the optimum ratio of the hardmask oxide thickness ($T_{mask}$) to the sidewall oxide thickness ($T_{ox}$) is $T_{mask}/T_{ox}$=10/2 nm for the minimum logic delay ($\tau$) while $T_{mask}/T_{ox}$=5/1~2 nm for the maximum intrinsic gate capacitance coupling ratio (ICR) with the fixed channel length ($L_G$) and the fin width ($W_{fin}$) under the short channel effect criterion. It means that the TG FinFET is not under the optimal condition in terms of the circuit performance. Second, under optimized $T_{mask}/T_{ox}$, the propagation delay ($\tau$) decreases with the increasing fin height $H_{fin}$. It means that the FinFET-based logic circuit operation goes into the drive current-dominant regime rather than the input gate load capacitance-dominant regime as $H_{fin}$ increases. In the end, the sensitivity of $\Delta\tau/{\Delta}H_{fin}$ or ${{\Delta}I_{ON}}'/{\Delta}H_{fin}$ decreases as $L_G/W_{fin}$ is scaled-down. However, $W_{fin}$ should be carefully designed especially in circuits that are strongly influenced by the self-capacitance or a physical layout because the scaling of $W_{fin}$ is followed by the increase of the self-capacitance portion in the total load capacitance.
Metal oxides with high dielectric constants have the potential to expend scaling of transistor gate capacitance beyond that of ultrathin silicon dioxide. However, during deposition of most metal oxides on silicon, an interfacial region of SiOx is formed and limits the specific capacitance of the gate structure. We deposisted aluminum oxide and examined the composition of the interfacial layer by employing high-resolution X-ray photoelectron spectroscopy and X-ray reflectivity. We find that the interfacial region is not pure SiO$_2$, but is composed of a complex depth-dependent ternary oxide of $AlSi_xO_y$ and the pure SiO$_2$.
RF 직접 추출 방법을 통해 얻은 정확한 MOSFET 기판 파라미터를 이용하여 기판저항만을 가진 BSIM4 모델은 스케일링 부정확성 때문에 넓은 영역의 게이트 길이에 적용하기에는 물리적으로 맞지 않다는 것이 증명됐다. BSIM4의 비물리적인 문제점을 제거하기 위해서 추가적인 유전체 기판 캐패시터를 가진 수정된 BSIM4 모델이 사용되었고, 이 모델의 물리적 타당성은 우수한 게이트 길이 scalability를 관찰함으로써 증명되었다.
With the NAND Flash scaling down, it becomes more and more difficult to follow Moore's law to continue the scaling due to physical limitations. Recently, three-dimensional (3D) flash memories have introduced as an ideal solution for ultra-high-density data storage. In 3D flash memory, as the process reason, we need to use poly-Si TFTs instead of conventional transistors. So, after combining charge trap flash (CTF) structure and poly-Si TFTs, the emerging device SONOS-TFTs has also suffered from some reliability problem such as hot carrier degradation, charge-trapping-induced parasitic capacitance and resistance which both create interface traps. Charge pumping method is a useful tool to investigate the degradation phenomenon related to interface trap creation. However, the curves for charge pumping current in SONOS TFTs were far from ideal, which previously due to the fabrication process or some unknown traps. It needs an optimization and the important geometrical effect should be eliminated. In spite of its importance, it is still not deeply studied. In our work, base-level sweep model was applied in SONOS TFTs, and the nonideal charge pumping current was optimized by adjusting the gate pulse transition time. As a result, after the optimizing, an improved charge pumping current curve is obtained.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.