• 제목/요약/키워드: capacitance density

검색결과 395건 처리시간 0.026초

고분자 발광다이오드에서 공액고분자 전해질 전자수송층에 의해 변화되는 전자주입 메카니즘 (Electron Injection Mechanisms Varied by Conjugated Polyelectrolyte Electron Transporting Layers in Polymer Light-Emitting Diodes)

  • 엄성수;박주현
    • 폴리머
    • /
    • 제36권4호
    • /
    • pp.519-524
    • /
    • 2012
  • 공액고분자 전해질 전자수송층을 이용하는 고분자 발광소자의 정전용량을 측정하는 것은 전류밀도-전압-발광특성을 측정하는 방법과 더불어 전자수송층으로서 공액고분자 전해질의 기능을 이해하기 위한 소자물리 연구에서 중요한 정보를 제공해준다. 본 연구에서는 고분자 전해질의 반대 이온의 종류에 따라 저주파수 영역에서 정전용량의 거동이 변화하는 것으로부터 전하 주입의 메카니즘에서 차이점이 있음을 분석하였다. 정전용량 모델을 이용한 분석은 전자주입 메카니즘이 음극/전자수송층/발광층 사이의 계면에서 발생하는 쌍극자 배열 또는 전하수송체의 축적에 의한 것임을 나타내었다.

Fabrication of High Break-down Voltage MIM Capacitors for IPD Applications

  • Wang, Cong;Kim, Nam-Young
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.241-241
    • /
    • 2009
  • For the Radio Frequency Integrated Passive Device (RFIPD) application, we have successfully developed and characterized high break-down voltage metal-insulator-metal (MIM) capacitors with 2,000 ${\AA}$ plasma-enhanced chemical vapor deposition (PECVD) silicon nitride which deposited with $SiH_4/NH_3$ gas mixing rate, working pressure, and RF power of PECVD at $250^{\circ}C$ chamber temperature. At the PECVD process condition of gas mixing rate (0.957), working pressure (0.9 Torr), and RF power (60 W), the AFM RMS value of about 2,000 ${\AA}$ silicon nitride on the bottom metal was the lowest of 0.862 nm and break-down electric field was the highest of about 8.0 MV/cm with the capacitance density of 326.5 $pF/mm^2$.

  • PDF

Quantum modulation of the channel charge and distributed capacitance of double gated nanosize FETs

  • Gasparyan, Ferdinand V.;Aroutiounian, Vladimir M.
    • Advances in nano research
    • /
    • 제3권1호
    • /
    • pp.49-54
    • /
    • 2015
  • The structure represents symmetrical metal electrode (gate 1) - front $SiO_2$ layer - n-Si nanowire FET - buried $SiO_2$ layer - metal electrode (gate 2). At the symmetrical gate voltages high conductive regions near the gate 1 - front $SiO_2$ and gate 2 - buried $SiO_2$ interfaces correspondingly, and low conductive region in the central region of the NW are formed. Possibilities of applications of nanosize FETs at the deep inversion and depletion as a distributed capacitance are demonstrated. Capacity density is an order to ${\sim}{\mu}F/cm^2$. The charge density, it distribution and capacity value in the nanowire can be controlled by a small changes in the gate voltages. at the non-symmetrical gate voltages high conductive regions will move to corresponding interfaces and low conductive region will modulate non-symmetrically. In this case source-drain current of the FET will redistributed and change current way. This gives opportunity to investigate surface and bulk transport processes in the nanosize inversion channel.

Thermal Oxidation 법으로 제조된 $Ta_2O_5$ 박막의 유전체 물성에 관한 연구 (The study on dielectric properties of $Ta_2O_5$ thin films obtained by thermal oxidation)

  • 김인성;김현주;민복기;송재성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 C
    • /
    • pp.1473-1475
    • /
    • 2002
  • This study presents the dielectric properties of $Ta_2O_5$ MIM capacitor structure processed by thermal oxidation. The AES(auger electron emission) depth profile showed thermal oxidation effect gives rise to the $O_2$ deficiened into the new layer. The leakage current density respectively, at $1{\sim}3{\times}10^{-3}$(kV/cm) were $3{\times}10^{-4}-10^{-8}(A/cm^2)$. Leakage current density behavior is stable irrespective of applied electric field, the frequency va capacitance characteristic enhanced stability. The capacitance vs voltage measurement that, $V_{fb}$(flat-band voltage) was increase dependance on the thin films thickness, it is changed negative to positive.

  • PDF

고온 확산공정에 따른 산화막의 전기적 특성 (Electrical Characteristics of Oxide Layer Due to High Temperature Diffusion Process)

  • 홍능표;홍진웅
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권10호
    • /
    • pp.451-457
    • /
    • 2003
  • The silicon wafer is stable status at room temperature, but it is weak at high temperatures which is necessary for it to be fabricated into a power semiconductor device. During thermal diffusion processing, a high temperature produces a variety thermal stress to the wafer, resulting in device failure mode which can cause unwanted oxide charge or some defect. This disrupts the silicon crystal structure and permanently degrades the electrical and physical characteristics of the wafer. In this paper, the electrical characteristics of a single oxide layer due to high temperature diffusion process, wafer resistivity and thickness of polyback was researched. The oxide quality was examined through capacitance-voltage characteristics, defect density and BMD(Bulk Micro Defect) density. It will describe the capacitance-voltage characteristics of the single oxide layer by semiconductor process and device simulation.

기가비트 이더넷용 CMOS 전치증폭기 설계 (CMOS Transimpedance Amplifiers for Gigabit Ethernet Applications)

  • 박성민
    • 대한전자공학회논문지SD
    • /
    • 제43권4호
    • /
    • pp.16-22
    • /
    • 2006
  • 본 논문에서는 CMOS 공정을 사용하여 기가비트 이더넷 응용을 위한 전치증폭기 회로를 구현하였다 대역폭 확장 및 노이즈 성능개선을 위해, regulated cascade 설계기법을 사용하였고 이로써, 광다이오드 및 TIA 입력단의 큰 기생 캐패시턴스를 대역폭 결정으로부터 효과적으로 차단하였다. 0.6um CMOS공정을 사용하여 구현한 1.25Gb/s 전치증폭기의 칩 측정 결과 58dBohm의 트랜스 임피던스 이득, 0.5pF 기생 광다이오드 캐패시턴스에 대해 950MHz의 대역폭과 6.3pA/sqrt(Hz)의 평균 노이즈 전류 스펙트럼 밀도, 5V 단일 전원전압으로부터 85mW의 전력소모를 보였다. 또한, 0.18um CMOS 공정을 사용하여 설계한 10Gb/s 전치증폭기는 RGC 기법과 인덕티브 피킹기술을 동시에 사용함으로써, 59.4dBohm의 트랜스 임피던스 이득, 0.25pF 기생 캐패시턴스에 대해 8GHz의 대역폭, 20pA/sqrt(Hz)의 노이즈 전류 스펙트럼 밀도, 1.8V 단일전압에 대해 14mW의 전력소모를 보였다.

고분자 융해 반응을 이용한 전기 이중층 커패시터용 다공성 활성탄 제조 (Fabrication of Activated Porous Carbon Using Polymer Decomposition for Electrical Double-Layer Capacitors)

  • 성기욱;신동요;안효진
    • 한국재료학회지
    • /
    • 제29권10호
    • /
    • pp.623-630
    • /
    • 2019
  • Because of their excellent stability and highly specific surface area, carbon based materials have received attention as electrode materials of electrical double-layer capacitors(EDLCs). Biomass based carbon materials have been studied for electrode materials of EDLCs; these materials have low capacitance and high-rate performance. We fabricated tofu based porous activated carbon by polymer dissolution reaction and KOH activation. The activated porous carbon(APC-15), which has an optimum condition of 15 wt%, has a high specific surface area($1,296.1m^2\;g^{-1}$), an increased average pore diameter(2.3194 nm), and a high mesopore distribution(32.4 %), as well as increased surface functional groups. In addition, APC has a high specific capacitance($195F\;g^{-1}$) at low current density of $0.1A\;g^{-1}$ and excellent specific capacitance($164F\;g^{-1}$) at high current density of $2.0A\;g^{-1}$. Due to the increased specific surface area, volume ratio of mesopores, and surface functional groups, the specific capacitance and high-rate performance increased. Consequently, the tofu based activated porous carbon can be proposed as an electrode material for high-performance EDLCs.

고성능 에너지 저장 소자를 위한 니켈 구조체에 담지된 니켈 코발트 수산화물의 나노 형상 제어 (Nano-Morphology Design of Nickel Cobalt Hydroxide on Nickel Foam for High-Performance Energy Storage Devices)

  • 신동요;윤종천;하철우
    • 한국재료학회지
    • /
    • 제31권12호
    • /
    • pp.710-718
    • /
    • 2021
  • Recently, due to high theoretical capacitance and excellent ion diffusion rate caused by the 2D layered crystal structure, transition metal hydroxides (TMHs) have generated considerable attention as active materials in supercapacitors (or electrochemical capacitors). However, TMHs should be designed using morphological or structural modification if they are to be used as active materials in supercapacitors, because they have insulation properties that induce low charge transfer rate. This study aims to modify the morphological structure for high cycling stability and fast charge storage kinetics of TMHs through the use of nickel cobalt hydroxide [NiCo(OH)2] decorated on nickel foam. Among the samples used, needle-like NiCo(OH)2 decorated on nickel foam offers a high specific capacitance (1110.9 F/g at current density of 0.5 A/g) with good rate capability (1110.9 - 746.7 F/g at current densities of 0.5 - 10.0 A/g). Moreover, at a high current density (10.0 A/g), a remarkable capacitance (713.8 F/g) and capacitance retention of 95.6% after 5000 cycles are noted. These results are attributed to high charge storage sites of needle-like NiCo(OH)2 and uniformly grown NiCo(OH)2 on nickel foam surface.

정전용량센서를 이용한 W/O형 유화연료의 안정성 평가 (An Estimation on the Stability of W/O Type Emulsified Fuel Using by Capacitance Sensor)

  • 조성철;오양환;임석연
    • 한국응용과학기술학회지
    • /
    • 제28권1호
    • /
    • pp.95-101
    • /
    • 2011
  • We estimated on the stability of W/O type emulsified fuel using by capacitance sensor, so it concluded the following conclusions. For the first 24 hours, prepared emulsified fuel reveals phase separation ratio of 5%, maintains stable status which verifies the stability of emulsified fuel. Adding more water increases the phase separation ratio rapidly, and adding more surfactant displays stable emulsification. Adding water causes larger size of water droplet diameter, and adding surfactant mixture causes smaller size of water droplet diameter. In conclusion, the size of W/O type emulsified fuel water droplet diameter is directly related to the volume of surfactant, and density of water droplet diameter changes thedistribution according to water contents.

AIN 버퍼층을 사용한 MFIS 구조의 제작 및 특성 (Fabrications and properties of MFIS structure using AIN buffer layer)

  • 정순원;김용성;이남열;김진규;정상현;김광호;유병곤;이원재;유인규
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 추계종합학술대회 논문집(2)
    • /
    • pp.29-32
    • /
    • 2000
  • Meta1-ferroelectric-insulator-semiconductor(MFIS) devices using Pt/LiNbO$_{3}$/AIN/Si structure were successfully fabricated. AIN thin films were made into metal-insulator-semiconductor(MIS) devices by evaporating aluminum in a dot array on the film surface. The dielectric constant of the AIN film calculated from the capacitance in the accumulation region in the capacitance-voltage(C-V ) characteristic is 8. The gate leakage current density of MIS devices using a aluminum electrode showed the least value of 1$\times$10$^{-8A}$ $\textrm{cm}^2$ order at the electric field of 500㎸/cm. A typica] value of the dielectric constant of MFIS device was about 23 derived from 1MHz capacitance-voltage (C-V) measurement and the resistivity of the film at the field of 500㎸/cm was about 5.6$\times$ 10$^{13}$ $\Omega$.cmcm

  • PDF