• 제목/요약/키워드: capacitance density

검색결과 395건 처리시간 0.025초

Preparation of Nitrogen-doped Carbon Nanowire Arrays by Carbonization of Mussel-inspired Polydopamine

  • Oh, Youngseok;Lee, Jea Uk;Lee, Wonoh
    • Composites Research
    • /
    • 제29권4호
    • /
    • pp.132-137
    • /
    • 2016
  • Based on mussel-inspired polydopamine (PDA), a novel technique to fabricate carbon nanowire (CNW) arrays is presented for a possible use of porous carbon electrode in electrochemical energy storage applications. PDA can give more porosity and nitrogen-doping effect to carbon electrodes, since it has high graphitic carbon yield characteristic and rich amine functionalities. Using such outstanding properties, the applicability of PDA for electrochemical energy storage devices was investigated. To achieve this, the decoration of the CNW arrays on carbon fiber surface was performed to increase the surface area for storage of electrical charge and the chemical active sites. Here, zinc oxide (ZnO) nanowire (NW) arrays were hydrothermally grown on the carbon fiber surface and then, PDA was coated on ZnO NWs. Finally, high temperature annealing was performed to carbonize PDA coating layers. For higher energy density, manganese oxide ($MnO_x$) nanoparticles (NPs), were deposited on the carbonized PDA NW arrays. The enlarged surface area induced by carbon nanowire arrays led to a 4.7-fold enhancement in areal capacitance compared to that of bare carbon fibers. The capacitance of nanowire-decorated electrodes reached up to $105.7mF/cm^2$, which is 59 times higher than that of pristine carbon fibers.

코발트 산화물 전극의 수퍼커페시터 성질에 미치는 니켈 폼 집전체 효과 (Effect of Nickel Foam Current Collector on the Supercapacitive Properties of Cobalt Oxide Electrode)

  • 윤여일;김광만;고장면
    • 한국세라믹학회지
    • /
    • 제45권6호
    • /
    • pp.368-373
    • /
    • 2008
  • An electrode for supercapacitor using 3-dimensional porous nickel foam as a current collector and cobalt oxide as an active material was prepared and characterized in terms of morphology observation, crystalline property analysis, and the investigation of electrochemical property. The electrode surface showed that the cobalt oxide was homogeneously coated as the crystalline phase of $Co_3O_4$. Cyclic voltammetry for the $Co_3O_4$/nickel foam electrode exhibited higher specific capacitance values (445 F/g at 10 mV/s and 350 F/g at 200 mV/s) and excellent capacitance retention ratio (99% after $10^4$ cycles). It was proved that the nickel foam substrate played the roles in reducing the interfacial resistance with cobalt oxide and in improving the electrode density by embedding greater amount of cobalt oxide within it.

방식도막에 있어서 물의 흡수에 관한 연구 (A study on the water absorption in protective coatings)

  • 박진환
    • 전기화학회지
    • /
    • 제1권1호
    • /
    • pp.55-59
    • /
    • 1998
  • 방식도막의 수명에 가장 큰 영향을 미치는 물의 흡수과정을 quartz crystal microbalance법 및 임피던스 원리를 이용하여 연구하였다. 도막에 있어서 물의 흡수량과 전해질 농도 변화에 따른 도막의 capacitance를 조사하였다 방식도막에 대한 물의 흡수는 삼투압 작용에 의해서 이루어지고, 흡수 초기단계에서는 도막두께가 얇을수록 흡수량이 많은 것을 알 수 있었다 그리고 도막을 구성하고 있는 수지의 종류 및 결합 가교밀도에 따라서 흡수성이 큰 영향을 받는다는 것을 알 수 있었다. 또한 방식도막에 있어서는 접촉하는 전해질 용액의 농도 변화에 따라 흡$\cdot$탈수 현상이 발생하였으며, 같은 종류의 도막이라도 도막두께가 얇을수록 탈수현상에 따른 capacitance의 증가폭이 큰 것으로 나타났다

SnO2 Mixed Banana Peel Derived Biochar Composite for Supercapacitor Application

  • Kaushal, Indu;Maken, Sanjeev;Kumar Sharma, Ashok
    • Korean Chemical Engineering Research
    • /
    • 제56권5호
    • /
    • pp.694-704
    • /
    • 2018
  • Novel $SnO_2$ mixed biochar composite was prepared from banana peel developed as electrode material for supercapacitor using simple chemical co-precipitation method. The physiochemical and morphological properties of activated composite $SnO_2$ mixed biochar were investigated with XRD, FTIR, UV-vis, FESEM and HRTEM. The composite accounts for outstanding electrochemical behavior such as high specific capacitance, significant rate capability and leading to good cycle retention up to 3500 cycles when used as electrode material for supercapacitors. Highly permeable $SnO_2$ mixed biochar derived from banana peel exhibited maximum specific capacitance of $465F\;g^{-1}$ at a scan rate of $10mV\;s^{-1}$ by cyclic voltammetry (CV) and $476Fg^{-1}$ at current density of $0.15Ag^{-1}$ by charge discharge studies significantly higher about 47% than previously reported identical work on banana peel biochar.

Preparation and Characteristics of Li4Ti5O12 Anode Material for Hybrid Supercapacitor

  • Lee, Byung-Gwan;Yoon, Jung-Rag
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권2호
    • /
    • pp.207-211
    • /
    • 2012
  • Spinel-$Li_4Ti_5O_{12}$ was successfully synthesized by a solid-phase method at 800, 850, and $900^{\circ}C$ according to the $Li_4Ti_5O_{12}$ cubic spinel phase structure. To achieve higher EDLC energy density with the $Li_4Ti_5O_{12}$, the negative electrode of the hybrid supercapacitor was studied in this work. The electrochemical performances of the hybrid supercapacitor and EDLC were characterized by constant current discharge curves, c-rate, and cycle performance testing. The capacitance (1st cycle) of the hybrid supercapacitor and EDLC was 209 and 109 F, respectively, which is higher than EDLC. The capacitance of the hybrid supercapacitor decreases from 209 F to 101 F after 20 cycles when discharged at several specific current densities ranging from 1 to 10 A. In contrast, capacitance of the EDLC hardly decreases after 20 cycles. Results show that hybrid supercapacitor benefits from the high rate capability of supercapacitor and high capacity of the battery. Findings also prove that the hybrid supercapacitor is an energy storage device where the supercapacitor and the Li ion secondary battery coexist in one cell system.

$LiNbO_3$/AIN 구조를 이용한 MFIS 커패시터의 제작 및 특성 (Fabrications and properties of MFIS capacitor using $LiNbO_3$/AIN structure)

  • 이남열;정순원;김용성;김진규;정상현;김광호;유병곤;이원재;유인규
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.743-746
    • /
    • 2000
  • Metal-ferroelectric-insulator-semiconductor(MFIS) devices using Pt/$LiNbO_3$/Si structure were successfully fabricated. The dielectric constant of the AIN film calculated from the capacitance in the accumulation region in the capacitance-voltage(C-V) curve was about 8.2. The gate leakage current density of MIS devices using a aluminum electrode showed the least value of 1$\times$$1O^{-8}$A/$cm^2$ order at the electric field of 500kV/cm. The dielectric constant of $LiNbO_3$film on AIN/Si structure was about 23 derived from 1MHz capacitance-voltage (C-V) measurement and the resistivity of the film at the field of 500kV/cm was about 5.6$\times$ $1O^{13}$ $\Omega$.cm.

  • PDF

High Xe AC PDP에서 전극구조와 유전체 두께에 따른 방전 특성 분석 (Effects of Dielectric Layer Thickness and Electrode Structures on High Xe AC-PDP)

  • 허준;김윤기;김동현;이해준;이호준
    • 전기학회논문지
    • /
    • 제61권2호
    • /
    • pp.237-242
    • /
    • 2012
  • In this paper, we investigated effects of ITO electrode geometry and dielectric layer thickness on the discharge Characteristic of AC PDP. As the dielectric thickness is decreased ($30{\sim}12{\mu}m$), firing and sustain voltage is decreased. Luminance and discharge power increase with decreasing dielectric layer thickness because of increasing capacitance between plasma and electrodes. Reactive power decreases with dielectric thickness due to reduced capacitance between sustain electrodes. For the high Xe test panel with small ITO electrode, luminous efficacy as well as luminance increase with decreasing dielectric layer thickness. This result suggest that high power density and small plasma volume is beneficial for high efficacy discharge.

DRAM 의 저전력 구현을 위한 안정한 기판전압 발생기 설계에 관한 연구 (A study on the Design of a stable Substrate Bias Generator for Low power DRAM's)

  • 곽승욱;성양현곽계달
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.703-706
    • /
    • 1998
  • This paper presents an efficient substrate-bias generator(SBG)for low-power, high-density DRAM's The proposed SBG can supply stable voltage with switching the supply voltage of driving circuit, and it can substitude the small capacitance for the large capacitance. The charge pumping circuit of the SBG suffere no VT loss and is to be applicable to low-voltage DRAM's. Also it can reduce the power consumption to make VBB because of it's high pumping efficiency. Using biasing voltage with positive temperature coefficient, VBB level detecting circuit can detect constant value of VBB against temperature variation. VBB level during VBB maintaining period varies 0.19% and the power dissipation during this period is 0.16mw. Charge pumping circuit can make VBB level up to -1.47V using VCC-1.5V, and do charge pumping operation one and half faster than the conventional ones. The temperature dependency of the VBB level detecting circuit is 0.34%. Therefore the proposed SBG is expected to supply a stable VBB with less power consumption when it is used in low power DRAM's.

  • PDF

Penicillin-G 첨가 배지에서 배양한 코리네형 세균의 전기장 충격법에 의한 고효율 형질전환 (High Frequency Electroporation-transformation of Coryneform Bacteria Grown in the Medium with Penicillin-G)

  • 노갑수;김성준
    • KSBB Journal
    • /
    • 제6권3호
    • /
    • pp.223-230
    • /
    • 1991
  • Using the shuttle vector pECCGl between Escherichia coli and Corynebacterium glutamicum and C. glutamicum strain JS231 grown in the medium supplemented with penicillin-G, which inhibits the formation of cross-links in the peptidoglycan of bacterial cell wall, various parameters involved in electroporation system including resistance, electric field strength, capacitance, DNA concentration, and cell density were investigated independently and optimized for the high efficiency transformation of coryneform bacteria. Using cells grown with 0.3U/ml of penicillin-G and harvested at A600 of 0.7-0.8, transformation efficiencies of 107-l08 transformants/$\mu\textrm{g}$ of DNA with Corynebcctertum glutamicum strain JS231 and wild type ATCC13032 were achieved under conditions of 12.5kV/cm of electric field strength, 400 ohms of resistance, $25\mu$F of capacitance, 3$\times$108 cells per transformation(1.2$\times$1010 cells/ml) and 100ng of plasmid DNA per transformation.

  • PDF

BiCMOS 및 CMOS로 구현된 Inverter에 대한 특성비교 (A Study on the Characteristics of BiCMOS and CMOS Inverters)

  • 정종척;이계훈;우영신;성만영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1993년도 추계학술대회 논문집
    • /
    • pp.93-96
    • /
    • 1993
  • BiCMOS technology, which combines CMOS and bipolar technology, offers the possibility of achieving both very high density and high performance. In this paper, the characteristics of BiCMOS and CMOS circuits, especilly the delay time is studied. BiCMOS inverter, which has high drive ability because of bipolar transistor, drives high load capacitance and has low-power characteristics because the current flows only during switching transient just like the CMOS gate. BiCMOS inverter has the less dependence on load capacitance than CMOS inverter. SPICE that has been used for electronic circuit analysis is chosen to simulate these circuits and the characteristics is discussed.

  • PDF