• Title/Summary/Keyword: cantilever method

검색결과 747건 처리시간 0.026초

Assessment of effect of material properties on seismic response of a cantilever wall

  • Cakir, Tufan
    • Geomechanics and Engineering
    • /
    • 제13권4호
    • /
    • pp.601-619
    • /
    • 2017
  • Cantilever retaining wall movements generally depend on the intensity and duration of ground motion, the response of the soil underlying the wall, the response of the backfill, the structural rigidity, and soil-structure interaction (SSI). This paper investigates the effect of material properties on seismic response of backfill-cantilever retaining wall-soil/foundation interaction system considering SSI. The material properties varied include the modulus of elasticity, Poisson's ratio, and mass density of the wall material. A series of nonlinear time history analyses with variation of material properties of the cantilever retaining wall are carried out by using the suggested finite element model (FEM). The backfill and foundation soil are modelled as an elastoplastic medium obeying the Drucker-Prager yield criterion, and the backfill-wall interface behavior is taken into consideration by using interface elements between the wall and soil to allow for de-bonding. The viscous boundary model is used in three dimensions to consider radiational effect of the seismic waves through the soil medium. In the seismic analyses, North-South component of the ground motion recorded during August 17, 1999 Kocaeli Earthquake in Yarimca station is used. Dynamic equations of motions are solved by using Newmark's direct step-by-step integration method. The response quantities incorporate the lateral displacements of the wall relative to the moving base and the stresses in the wall in all directions. The results show that while the modulus of elasticity has a considerable effect on seismic behavior of cantilever retaining wall, the Poisson's ratio and mass density of the wall material have negligible effects on seismic response.

회전하는 유체이송 외팔 파이프의 동특성 해석 (The Dynamic Characteristics of Rotating Cantilever Pipe Conveying Fluid)

  • 윤한익;손인수
    • 한국소음진동공학회논문집
    • /
    • 제13권1호
    • /
    • pp.26-32
    • /
    • 2003
  • The vibrational system of this study is consisted of a rotating cantilever pipe and the flow in the pipe. The equation of motion is derived by using Lagrange equation. The influences of the rotating angular velocity and the velocities of fluid flow in the pipe have been studied on the dynamic characteristics of a rotating cantilever pipe by numerical method. The tip-amplitude of axial vibration and maximum tip-deflection of axial direction of cantilever pipe are directly proportional to the velocity of fluid and rotating angular velocity of pipe In the steady state. respectively The bending tip-amplitude of cantilever pipe is inversely proportional to the velocity of fluid in the steady state. When the rotating angular velocity is 5 rad/s, the velocity of fluid increase with increasing the natural frequency of axial vibration at second mode and third mode, but the natural frequency axial direction of first mode is decreased. The natural frequency of lateral direction is decreased due to increase of the rotating angular velocity. It identifies that the Influence of velocity of fluid give much variation lower mode of vibration in lateral direction. And the Influence of velocity of fluid give much variation higher mode of vibration in axial direction.

Detection of the mechanical resonance of a micromechanical cantilever using dynamic flexural measurement technique and its mass sensing application

  • 김학성;윤호열;정운석;유나리;박정호;이상욱
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.447-447
    • /
    • 2011
  • We studied to detect the mass variation using micro mechanical resonator. For measuring the resonance frequency of the micro mechanical system, optical method using laser interference is selected. A simple resonator is prepared by attaching an AFM cantilever on the piezo stack. The piezo stack makes a the cantilever vibrated with its resonance frequency. To change the mass of the resonator, gold was evaporated on the cantilever. We measured how much resonance frequency was changed according to the amount of gold attached on cantilever. This resonator is able to perform the role of a mass sensor and has a resolution of the order of micrograms. The fabrication of the resonator and measurement setup for detecting the mechanical resonance will be introduced in this presentation.

  • PDF

유체유동 외팔 파이프의 고유진동수에 미치는 이동질량들의 영향 (The Influence of Moving Masses on Natural Frequency of Cantilever Pipe Conveying Fluid)

  • 윤한익;손인수;진종태;김현수
    • 한국소음진동공학회논문집
    • /
    • 제12권11호
    • /
    • pp.840-846
    • /
    • 2002
  • The vibrational system of this study is consisted of a cantilever pipe conveying fluid, the moving masses upon it and an attached tip mass. The equation of motion is derived by using Lagrange equation. The influences of the velocity and the number of moving masses and the velocities of fluid flow in the pipe have been studied on the natural frequency of a cantilever pipe by numerical method. As the size and number of a moving mass increases, the natural frequency of cantilever pipe conveying fluid is decreased. When the first a moving mass Is located at the end of cantilever pipe, the increasing of the distance of moving masses make the natural frequency increase at first and third mode, but the frequency of second mode is decreased. The variation of natural frequency of the system is decreased due to increase of the number of a moving mass. The number and distance of moving masses effect more on the frequency of higher mode of vibration.

Semi analytical solutions for flexural-torsional buckling of thin-walled cantilever beams with doubly symmetric cross-sections

  • Gilbert Xiao;Silky Ho;John P. Papangelis
    • Structural Engineering and Mechanics
    • /
    • 제87권6호
    • /
    • pp.541-554
    • /
    • 2023
  • An unbraced cantilever beam subjected to loads which cause bending about the major axis may buckle in a flexuraltorsional mode by deflecting laterally and twisting. For the efficient design of these structures, design engineers require a simple accurate equation for the elastic flexural-torsional buckling load. Existing solutions for the flexural-torsional buckling of cantilever beams have mainly been derived by numerical methods which are tedious to implement. In this research, an attempt is made to derive a theoretical equation by the energy method using different buckled shapes. However, the results of a finite element flexural-torsional buckling analysis reveal that the buckled shapes for the lateral deflection and twist rotation are different for cantilever beams. In particular, the buckled shape for the twist rotation also varies with the section size. In light of these findings, the finite element flexural-torsional buckling analysis was then used to derive simple accurate equations for the elastic buckling load and moment for cantilever beams subjected to end point load, uniformly distributed load and end moment. The results are compared with previous research and it was found that the equations derived in this study are accurate and simple to use.

Study on the cantilever ratio optimization of high-temperature molten salt pump for molten salt reactor based on structural integrity

  • Xing-Chao Shen;Yuan Fu;Jian-Yu Zhang;Jin Yang;Zhi-Jun Li
    • Nuclear Engineering and Technology
    • /
    • 제56권9호
    • /
    • pp.3730-3739
    • /
    • 2024
  • The high-temperature molten salt pump is the core equipment in the small modular molten salt reactor with media temperatures up to 700 ℃. The cantilever ratio of the molten salt pump is usually large. Excessively large cantilever ratios cause increased deformations and rotational amplitudes at the impeller, thus affecting the operational stability of the main pump; small cantilever ratios cause heavy temperature gradients, thus affecting the structural integrity evaluation. This paper used numerical simulation methods to calculate and analyze the temperature field, stress, and structural integrity, optimized the pump shaft cantilever length of the original scheme based on structural integrity using the dichotomy method, and analyzed the rotor dynamics of the optimization results. The results of this study show that the thermal expansion load caused by the temperature difference has a significant mechanical effect on the structure; the first-order critical speed of the rotor system of the optimized schemes has been improved, and the amplitude of the unbalanced response has been significantly reduced, which not only improves the operational stability of the rotor, also contributes to the compact design of the main pump of a small modular molten salt reactor.

회전 방향으로 매개 가진되는 외팔보의 동적 해석 (Dynamic Analysis of a Cantilever Beam with the Payametric Excitation in Rotation)

  • 임형빈;정진태
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2270-2276
    • /
    • 2002
  • Dynamic stability of a rotary oscillating cantilever beam is presented in this study. Using the stretch deformation instead of the conventional axial deformation, three linear partial differential equations are derived from Hamilton's principle and transformed into dimensionless forms. Stability diagrams of the first order approximate solutions are obtained by using the multiple scale perturbation method. The stability diagrams show that relatively large unstable regions exist near the combination of the first chordwise bending natural frequency and the first stretch natural frequency. This result is verified by using the generalized -$\alpha$ method.

2차원 구조물의 최적형상설계에 관한 연구 (A Study on the Optimal Shape Design of 2-D Structures)

  • 김홍건;양성모;노홍길;나석찬;유기현;조남익
    • 한국공작기계학회논문집
    • /
    • 제12권2호
    • /
    • pp.9-16
    • /
    • 2003
  • A strategy of the optimal shape design with FEA(Finite Element Analysis) for 2-D structure is proposed by comparing subproblem approximation method with first order approximation method. A cantilever beam with two different loading conditions, a concentrated load and an evenly distribute load, and truss structure with a concentrated loading condition are implemented to optimize the shape. It gives a good design strategy on the optimal truss structure as well as the optimal cantilever beam shape. It is found that the convergence is quickly finished with the iteration number below ten. Optimized shapes of cantilever beam and truss structure are shown with stress contour plot by the results of the subproblem approximation method and the first order approximation methd.

마이크로 믹서의 형상 최적화 (Shape Optimization of a Micro-Static Mixer)

  • 한석영;김성훈
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.166-171
    • /
    • 2004
  • In this study, shape optimization of micro-static mixer with a cantilever beam was accomplished for mixing the mixing efficiency by using successive response surface approximations. Variables were chosen as the length of cantilever beam and the angle between horizontal and the cantilever beam. Sequential approximate optimization method was used to deal with both highly nonlinear and non-smooth characteristics of flow field in a micro-static mixer. Shape optimization problem of a micro-static mixer can be divided into a series of simple subproblems. Approximation to solve the subproblems was performed by response surface approximation, which does not require the sensitivity analysis. To verify the reliability of approximated objective function and the accuracy of it, ANOVA analysis and variables selection method were implemented, respectively. It was verified that successive response surface approximation worked very well and the mixing efficiency was improved very much comparing with the initial shape of a micro-static mixer.

  • PDF

Period doubling of the nonlinear dynamical system of an electrostatically actuated micro-cantilever

  • Chen, Y.M.;Liu, J.K.
    • Smart Structures and Systems
    • /
    • 제14권5호
    • /
    • pp.743-763
    • /
    • 2014
  • The paper presents an investigation of the nonlinear dynamical system of an electrostatically actuated micro-cantilever by the incremental harmonic balance (IHB) method. An efficient approach is proposed to tackle the difficulty in expanding the nonlinear terms into truncated Fourier series. With the help of this approach, periodic and multi-periodic solutions are obtained by the IHB method. Numerical examples show that the IHB solutions, provided as many as harmonics are taken into account, are in excellent agreement with numerical results. In addition, an iterative algorithm is suggested to accurately determine period doubling bifurcation points. The route to chaos via period doublings starting from the period-1 or period-3 solution are analyzed according to the Floquet and the Feigenbaum theories.