DOI QR코드

DOI QR Code

Semi analytical solutions for flexural-torsional buckling of thin-walled cantilever beams with doubly symmetric cross-sections

  • Gilbert Xiao (School of Civil Engineering, University of Sydney) ;
  • Silky Ho (School of Civil Engineering, University of Sydney) ;
  • John P. Papangelis (School of Civil Engineering, University of Sydney)
  • Received : 2022.02.28
  • Accepted : 2023.07.27
  • Published : 2023.09.25

Abstract

An unbraced cantilever beam subjected to loads which cause bending about the major axis may buckle in a flexuraltorsional mode by deflecting laterally and twisting. For the efficient design of these structures, design engineers require a simple accurate equation for the elastic flexural-torsional buckling load. Existing solutions for the flexural-torsional buckling of cantilever beams have mainly been derived by numerical methods which are tedious to implement. In this research, an attempt is made to derive a theoretical equation by the energy method using different buckled shapes. However, the results of a finite element flexural-torsional buckling analysis reveal that the buckled shapes for the lateral deflection and twist rotation are different for cantilever beams. In particular, the buckled shape for the twist rotation also varies with the section size. In light of these findings, the finite element flexural-torsional buckling analysis was then used to derive simple accurate equations for the elastic buckling load and moment for cantilever beams subjected to end point load, uniformly distributed load and end moment. The results are compared with previous research and it was found that the equations derived in this study are accurate and simple to use.

Keywords

References

  1. Achref, H., Foudil, M. and Cherif, B. (2019), "Higher buckling and lateral buckling strength of unrestrained and braced thin-walled beams: Analytical, numerical and design approach applications", J. Constr. Steel Res., 155, 1-19. https://doi.org/10.1016/j.jcsr.2018.12.007.
  2. Anderson, J.M. and Trahair, N.S. (1972), "Stability of monosymmetric beams and cantilevers", J. Struct. Div., 98(ST1), 269-286. https://doi.org/10.1061/JSDEAG.0003114.
  3. Andrade, A., Camotim, D. and Costa, P. (2007), "On the evaluation of elastic critical moments in doubly and singly symmetric I-section cantilevers", J. Constr. Steel Res., 63, 894-908. https://doi.org/10.1016/j.jcsr.2006.08.015.
  4. Assadi, M. and Roeder, C.W. (1985), "Stability of continuously restrained cantilevers", J. Eng. Mech., 111(12), 1440-1456. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:12(1440).
  5. Attard, M.M. (1986), "Lateral buckling analysis of beams by the FEM", Comput. Struct., 23(2), 271-231. https://doi.org/10.1016/0045-7949(86)90214-2.
  6. Barsoum, R.S. and Gallagher, R.H. (1970), "Finite element analysis of torsional and torsional-flexural stability problems", Int. J. Numer. Meth. Eng., 2, 335-352. https://doi.org/10.1002/nme.1620020304.
  7. Brown, P.T. and Trahair, N.S. (1968), "Finite integral solution of differential equations", Civil Eng. Trans., CE10(2), 193-196.
  8. Demirhan, A.L., Eroglu, H.E., Mutlu, E.O., Yilmaz, T. and Anil, O. (2020), "Experimental and numerical evaluation of inelastic lateral-torsional buckling of I-section cantilevers", J. Constr. Steel Res., 168. https://doi.org/10.1016/j.jcsr.2020.105991.
  9. Dowswell, B. (2002), "Lateral-torsional buckling of wide flange cantilever beams", Annual Stability Conference, Structural Stability Research Council, 267-290.
  10. Einafshar, N., Lezgy-Nazargah, M. and Beheshti-Aval, S.B. (2021), "Buckling, post-buckling and geometrically nonlinear analysis of thin-walled beams using a hypothetical layered composite cross-sectional model", Acta Mechanica, 232, 2733-2750. https://doi.org/10.1007/s00707-021-02936-3.
  11. Essa, H.S. and Kennedy, D.J.L. (1994), "Design of cantilever steel beams: refined approach", J. Struct. Eng., 120(9), 2623-2636. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:9(2623).
  12. Freund, J.E. and Perles, B.M. (2013), Modern Elementary Statistics, 12th Edition, Pearson, United Kingdom.
  13. Hancock, G.J. (1978), "Local, distortional and lateral buckling of I-beams", J. Struct. Div., 104(ST11), 1787-1798. https://doi.org/10.1061/JSDEAG.0005035.
  14. Hancock, G.J. and Trahair, N.S. (1978), "Finite element analysis of the lateral buckling of continuously restrained beam-columns", Civil Eng. Trans., CE20(2), 120-127.
  15. Jetteur, P. and Frey, F. (1986), "A four node Marguerre element for non-linear shell analysis", Eng. Comput., 3(4), 276-282. https://doi.org/10.1108/eb023667.
  16. Kitipornchai, S., Dux, P.F. and Richter, N.J. (1984), "Buckling and bracing of cantilevers", J. Struct. Eng., 110(9), 2250-2262. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:9(2250).
  17. Lee, H., Jung, D.W., Jeong, J.H. and Im, S. (1994), "Finite element analysis of lateral buckling for beam structures", Comput. Struct., 53(6), 1357-1371. https://doi.org/10.1016/0045-7949(94)90400-6.
  18. Lezgy-Nazargah M. (2017), "A generalized layered global-local beam theory for elasto-plastic analysis of thin-walled members", Thin Wall. Struct., 115, 48-57. https://doi.org/10.1016/j.tws.2017.02.004.
  19. Mohri, F., Brouki, A. and Roth J.C. (2003), "Theoretical and numerical stability analyses of unrestrained, mono-symmetric thin-walled beams", J. Constr. Steel Res., 59, 63-90. https://doi.org/10.1016/S0143-974X(02)00007-X.
  20. Nethercot, D. (1973), "The effective lengths of cantilevers as governed by lateral buckling", Struct. Eng., 51(5), 161-168.
  21. Ozbasaran, H., Aydin, R. and Dogan, M. (2015), "An alternative design procedure for lateral-torsional buckling of cantilever I-beams", Thin Wall. Struct., 90, 235-242. https://doi.org/10.1016/j.tws.2015.01.021.
  22. Papangelis, J.P., Trahair, N.S. and Hancock, G.J. (1998), "Elastic flexural-torsional buckling of structures by computer", Comput. Struct., 68, 125-137. https://doi.org/10.1016/S0045-7949(98)00037-6.
  23. Pi, Y.L., Trahair, N.S. and Rajasekaran, S. (1992), "Energy equation for beam lateral buckling", J. Struct. Eng., 118(6), 1462-1479. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:6(1462).
  24. Poley, S. (1956), "Lateral buckling of cantilevered I-beams under uniform load", Trans. Am. Soc. Civil Eng., 121(1), 786-790. https://doi.org/10.1061/TACEAT.0007376.
  25. Powell, G. and Klingner, R. (1970), "Elastic lateral buckling of steel beams", J. Struct. Div., 96(ST9), 1919-1932. https://doi.org/10.1061/JSDEAG.0002692.
  26. Roberts, T.M. and Burt, C.A. (1985), "Instability of monosymmetric I-beams and cantilevers", Int. J. Mech. Sci., 27(5), 313-324. https://doi.org/10.1016/0020-7403(85)90021-9.
  27. Sahraei, A., Wu, L. and Mohareb, M. (2015), "Finite element formulation for lateral torsion buckling analysis of shear deformable mono-symmetric thin-walled members", Thin Wall. Struct., 89, 212-226. https://doi.org/10.1016/j.tws.2014.11.023.
  28. Salvadori, M.G. (1951), "Numerical computation of buckling loads by finite differences", Trans. Am. Soc. Civil Eng., 116(1), 590-624. https://doi.org/10.1061/TACEAT.0006570.
  29. Standards Australia (2020), AS 4100-Steel Structures, Sydney, Australia.
  30. Strand7 Pty Ltd. (2023), Strand7 Finite Element Analysis, Sydney, Australia.
  31. Timoshenko, S.P. and Gere, J.M. (1961), Theory of Elastic Stability, McGraw-Hill, New York, USA.
  32. Trahair, N.S. (1993), Flexural-Torsional Buckling of Structures, E & FN Spon, London, UK.
  33. Trahair, N.S. (2010), "Steel cantilever strength by inelastic lateral buckling", J. Constr. Steel Res., 66, 993-999. https://doi.org/10.1016/j.jcsr.2010.02.007.
  34. Trahair, N.S. (2020), "Inelastic lateral buckling of steel cantilevers", Eng. Struct., 208, 109918. https://doi.org/10.1016/j.engstruct.2019.109918.
  35. Van Rensburg, B.W.J. and Skorpen, S.A. (2016), "Effective length factors for the lateral torsional buckling of cantilever beams", 6th International Conference on Structural Engineering, Mechanics and Computation, Cape Town, South Africa.
  36. Wang, C.M. and Kitipornchai, S. (1986), "On stability of monosymmetric cantilevers", Eng. Struct., 8, 169-180. https://doi.org/10.1016/0141-0296(86)90050-7.
  37. Wang, C.M., Kitipornchai, S. and Thevendran, V. (1987), "Buckling of braced monosymmetric cantilevers", Int. J. Mech. Sci., 29(5), 321-337. https://doi.org/10.1016/0020-7403(87)90115-9.
  38. Yilmaz, T. (2023), "Rapid evaluation of lateral-torsional buckling of European standard I-section cantilevers", Mech. Bas. Des. Struct. Mach., 1-19. https://doi.org/10.1080/15397734.2023.2223628.
  39. Yuan, W.B., Kim, B. and Chen, C.Y. (2013), "Lateral-torsional buckling of steel web tapered tee-section cantilevers", J. Constr. Steel Res., 87, 31-37. https://doi.org/10.1016/j.jcsr.2013.03.026.
  40. Zhang, L. and Tong, G.S. (2008), "Elastic flexural-torsional buckling of thin-walled cantilevers", Thin Wall. Struct., 46, 27-37. https://doi.org/10.1016/j.tws.2007.08.011.
  41. Zhang, W.F., Liu, Y.C., Hou, G.L., Chen, K.S., Ji, J., Deng, Y. and Deng, S.L. (2016), "Lateral-torsional buckling analysis of cantilever beam with tip lateral elastic brace under uniform and concentrated load", Int. J. Steel Struct., 16(4), 1161-1173. https://doi.org/10.1007/s13296-016-0052-5.
  42. Zhang, Z., Pei, S. and Qu, B. (2017), "Cantilever welded wide-flange beams with sinusoidal corrugations in webs", Eng. Struct., 144, 163-173. https://doi.org/10.1016/j.engstruct.2017.04.055.