• Title/Summary/Keyword: candidate materials

Search Result 809, Processing Time 0.029 seconds

Ultrasonic Synthesis of CoSe2-Graphene-TiO2 Ternary Composites for High Photocatalytic Degradation Performance

  • Ali, Asghar;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.3
    • /
    • pp.205-210
    • /
    • 2017
  • In this study, we examined the photo-degradation efficiency of $CoSe_2$-Graphene-$TiO_2$ ($CoSe_2-G-TiO_2$) nanocomposites under visible light irradiation using rhodamine B (RhB) as standard dye. $CoSe_2-G-TiO_2$ nanocomposites were synthesized by ultrasonication and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopic analysis and UV-Vis absorbance spectra analysis. Our results show that the $CoSe_2-G-TiO_2$ nanocomposite exhibited significant photo degradation efficiency compared to pure $TiO_2$ and $CoSe_2-G$, approximately 85.2% of the rhodamine (Rh B) degraded after 2.5 h. It is concluded that the $CoSe_2-G-TiO_2$ nanocomposite is a promising candidate for use in dye pollutants.

Microstructure and Sintering Behavior of ZnO Thermoelectric Materials Prepared by the Pulse-Current-Sintering Method

  • Shikatani, Noboru;Misawa, Tatsuya;Ohtsu, Yasunori;Fujita, Hiroharu;Kawakami, Yuji;Enjoji, Takashi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.682-683
    • /
    • 2006
  • Thermoelectric conversion efficiency of thermoelectric elements can be increased by using a structure combining n-type and p-type semiconductors. From the above point of view, attention was directed at ZnO as a candidate n-type semiconductor material and investigations were made. As the result, a dimensionless figure of merit ZT close to 0.28 (1073K) was obtained for specimens produced by the PCS (Pulse Current Sintering) method with addition of specified quantities of $TiO_2$, CoO, and $Al_2O_3$ to ZnO. It was found that the interstitial $TiO_2$ in the ZnO restrains the grain growth and CoO acts onto the bond between grains. The influence of the inclusion of $TiO_2$ and CoO onto the sintering behavior also was investigated.

  • PDF

Transparent Electrodes for Semitransparent Perovskite Solar Cells (반투명 페로브스카이트 태양전지용 투명전극 소재)

  • Lee, Phillip;Ko, Min Jae
    • Current Photovoltaic Research
    • /
    • v.6 no.3
    • /
    • pp.74-80
    • /
    • 2018
  • Recently, perovskite solar cells have shown tremendous improvement in power conversion efficiencies. Moreover, they have potential in semitransparent solar cell applications due to their high absorption coefficients. In order to fabricate semitransparent perovskite solar cells with good performance, it is essential to consider the suitability of transparent electrode materials in various aspects, such as transparency, conductivity and fabrication process. In this review, candidate materials for transparent electrodes in perovskite solar cells including carbon-based nanomaterials, conductive polymers and metallic nanostructures are discussed.

Development of Sugar Sensitive Drosophila Cell based ISFET Sensor for Alzheimer's Disease Diagnosis (알츠하이머 진단을 위한 당성분에 민감한 초파리 세포기반 ISFET센서개발)

  • Lim, Jeong-Ok;Yu, Joon-Boo;Kwon, Jae-Young;Byun, Hyung-Gi;Huh, Jeung-Soo;Cho, Won-Ju
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.281-285
    • /
    • 2013
  • In this study a biosensor was developed by using Drosophila cells expressing a gustatory receptor Gr5a and an ion sensitive field effect transistors (ISFETs) sensor device, which demonstrated significant compatibility with the Drosophila cells expressing Gr5a and their response to sugar. These results suggested that the newly developed cell based biosensor has a potential as a simple and easy screening device for Alzheimer's disease in the future.

A test for friction and wear characteristic of brake disk materials (제동디스크 소재의 마찰-마모특성 시험)

  • Lim, Choong-Hwan;Goo, Byeong-Choon
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1761-1765
    • /
    • 2008
  • In the braking of a railroad car, mechanical brake systems using wheel tread and brake disk are applied as well as electrical brake systems by regenerator and rheostat. It is very important to consider the frictional characteristic because kinetic energy of the vehicle is dissipated as converted thermal energy through friction between disk and brake pad during disk braking. A friction coefficient and wear characteristic are decided from the interrelationship of disk and friction material in the disk brake system. Lab-scale dynamometer test on developed brake disk materials for increasing heat resistance was performed in this study. Each candidate material was tested at various braking speeds and pressures and we obtained the friction coefficient and wear characteristic. And we executed comparative evaluation of the result from the test.

  • PDF

First-Principles Study on the Electronic Structure of Bulk and Single-Layer Boehmite

  • Son, Seungwook;Kim, Dongwook;Na-Phattalung, Sutassana;Ihm, Jisoon
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850138.1-1850138.6
    • /
    • 2018
  • Two-dimensional (2D) or layered materials have a great potential for applications in energy storage, catalysis, optoelectronics and gas separation. Fabricating novel 2D or quasi-2D layered materials composed of relatively abundant and inexpensive atomic species is an important issue for practical usage in industry. Here, we suggest the layer-structured AlOOH (Boehmite) as a promising candidate for such applications. Boehmite is a well-known layer-structured material and a single-layer can be exfoliated from the bulk boehmite by breaking the interlayer hydrogen bonding. We study atomic and electronic band structures of both bulk and single-layer boehmite, and also obtain the single-layer exfoliation energy using first-principles calculations.

Black Phosphorus Nano Flake Lithium Ion Battery Using Electrophoretic Deposition (전기영동 증착법을 이용한 Black Phosphorus Nano Flake 리튬이온 배터리)

  • Kim, Juyun;Park, Byoungnam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.252-255
    • /
    • 2019
  • Black phosphorus (BP) is a potential candidate for an anode in lithium ion batteries due to its high theoretical capacity and the large interlayer spacing in the monolayered phosphorene form, allowing for lithium intercalation/deintercalation. In this study, large-scale exfoliation of bulk BP was accomplished using a solution of NaOH and N-methyl-2-pyrrolidone (NMP), yielding phosphorene, which can be assembled into nanoflakes using electrophoretic deposition (EPD). Through the systematic addition of NaOH and subsequent sonication, BP nanoflakes were obtained in high yields by EPD, allowing for the integration of these nanoflakes into an anode in the film state. Anodes with a charge/discharge capacity of 172 mAh/g at a rate of 200 mA/g were obtained, which are promising for battery applications through various post-film treatments.

Exploring the Properties and Potential of Single-crystal NCM 811 for Lithium-ion Batteries

  • Yongseok Lee;Seunghoon Nam
    • Corrosion Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.36-43
    • /
    • 2023
  • Single-crystal Ni-rich NCM is a material that has drawn attention in the field of lithium-ion batteries due to its high energy density and long cycle life. In this study, we investigated the properties of single-crystal NCM 811 and its potential for use in lithium-ion batteries. High-quality single crystals of NCM 811 were successfully synthesized by crystal growth via a flux method. The single-crystal nature of the samples was confirmed through detailed characterization techniques, such as scanning electron microscopy and x-ray diffraction with Rietveld refinement. The crystal structure and electrochemical performances of the single-crystal NCM 811 were analyzed and compared to its poly-crystal counterpart. The results indicated that single-crystal NCM 811 had electrochemical performance and thermal stability superior to poly-crystalline NCM 811, making it a suitable candidate for high-performance batteries. The findings of this study contribute to a better understanding of the characteristics and potential of single-crystal NCM 811 for lithium-ion batteries.

Recent Trends in Composite Materials for Aircrafts (항공기용 복합소재의 개발 및 연구동향)

  • Kim, Deuk Ju;Oh, Dae Youn;Jeong, Moon Ki;Nam, Sang Yong
    • Applied Chemistry for Engineering
    • /
    • v.27 no.3
    • /
    • pp.252-258
    • /
    • 2016
  • The weight reduction and improved mechanical property are one of the prime factors to develop new materials for the aerospace industry. Composite materials have thus become the most attractive candidate for aircraft and other means of transportations due to their excellent property and light weight. In particular, fiber reinforced polymer (FRP) composite materials have been used as an alternative to metals in the aircraft. The composite materials have shown improved properties compared to those of metal and polymeric materials, which made the composites being used as the skin structure of the airplane. This review introduces different types of materials which have been developed from the FRP composite material and also one of the most advantageous ways to employ the composites in aircraft.

Improved Uniformity in Resistive Switching Characteristics of GeSe Thin Film by Ag Nanocrystals

  • Park, Ye-Na;Shin, Tae-Jun;Lee, Hyun-Jin;Lee, Ji-Soo;Jeong, Yong-Ki;Ahn, So-Hyun;Lee, On-You;Kim, Jang-Han;Nam, Ki-Hyun;Chung, Hong-Bay
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.237.2-237.2
    • /
    • 2013
  • ReRAM cell, also known as conductive bridging RAM (CBRAM), is a resistive switching memory based on non-volatile formation and dissolution of conductive filament in a solid electrolyte [1,2]. Especially, Chalcogenide-based ReRAM have become a promising candidate due to the simple structure, high density and low power operation than other types of ReRAM but the uniformity of switching parameter is undesirable. It is because diffusion of ions from anode to cathode in solid electrolyte layer is random [3]. That is to say, the formation of conductive filament is not go through the same paths in each switching cycle which is one of the major obstacles for performance improvement of ReRAM devices. Therefore, to control of nonuniform conductive filament formation is a key point to achieve a high performance ReRAM. In this paper, we demonstrated the enhanced repeatable bipolar resistive switching memory characteristics by spreading the Ag nanocrystals (Ag NCs) on amorphous GeSe layer compared to the conventional Ag/GeSe/Pt structure without Ag NCs. The Ag NCs and Ag top electrode act as a metal supply source of our devices. Excellent resistive switching memory characteristics were obtained and improvement of voltage distribution was achieved from the Al/Ag NCs/GeSe/Pt structure. At the same time, a stable DC endurance (>100 cycles) and an excellent data retention (>104 sec) properties was found from the Al/Ag NCs/GeSe/ Pt structured ReRAMs.

  • PDF