Narrow-band imaging (NBI) is the most widely used image-enhanced endoscopic technique. The superficial microanatomy of gastric mucosa can be visualized when used with a magnifying endoscopy with narrow-band imaging (ME-NBI). The diagnostic criteria for early gastric cancer (EGC), using the classification system for microvascular and microsurface pattern of ME-NBI, have been developed, and their usefulness has been proven in the differential diagnosis of small depressed cancer from focal gastritis and in lateral extent delineation of EGC. Some studies reported on the prediction of histologic differentiation and invasion depth of gastric cancer using ME-NBI; however, its application is limited in clinical practice, and further well-designed studies are necessary. Clinicians should understand the ME-NBI classification system and acquire appropriate diagnostic skills through various experiences and training to improve the quality of endoscopy for EGC diagnosis.
Hepatocellular carcinoma (HCC) is the sixth most common cancer and second leading cause of cancer-related death in the world. The aggressive but not always predictable pattern of HCC causes the limited treatment option and poorer outcome. Many researches had already proven the heterogeneity of HCC is one of the major challenges for treatment option and prognosis prediction. Molecular subtyping of HCC and selection of patient based on molecular profile can provide the optimization in the treatment and prognosis prediction. In this review, we have tried to summarize the molecular classification of HCC proposed by different valuable researches presented in the logistic way.
고령화가 심화되면서 암 발병률이 증가하고 있다. 피부 암은 외적으로 보이지만 사람들이 알아채지 못하거나 가볍게 간과하는 경우가 많다. 이에 초기 발견 시기를 놓쳐 말기의 경우 생존율이 7.5~11%로 사망에 이를 수 있다. 하지만 피부 암을 진단함에 있어 육안으로 진단하는 것이 아닌 정밀검사, 세포 검사 등 시간과 비용이 많이 든다는 단점이 있다. 따라서 본 연구에서는 이러한 단점을 해결하기 위해 Attention CNN 모델 기반 피부암 분류 시스템을 제안한다. 이 시스템은 전문의로 하여금 피부 암을 초기에 발견하여 신속한 조치를 취할 수 있도록 하는데 큰 도움을 줄 수 있다. 피부암 종류에 따른 이미지 데이터 불균형 문제에서 분포 비율이 낮은 데이터에는 Over Sampling 기법을, 분포 비율이 높은 데이터에는 Under Sampling 기법을 적용하여 완화하고 Attention layer가 없는 모델과 있는 모델을 비교하여 Attention layer가 없는 사전학습 모델에 추가한 피부암 분류 모델을 제안한다. 또한, 특정 클래스에 대하여 데이터 증강 기법을 강화하여 데이터 불균형 문제를 해결할 계획이다.
분류 성능을 향상시키기 위해서 다수의 분류기들을 결합하는 연구가 활발히 진행되고 있다. 우수한 앙상블 분류기를 회득하기 위해서는 정확하고 다양한 개별 분류기를 구축해야 한다. 기존에는 Bagging이나 Boosting 등의 앙상블 학습 기법을 이용하거나 획득된 개별 분류기의 학습 데이타에 대한 다양성을 측정하였지만 유전 발현 데이타와 같이 학습 데이타가 적은 경우 한계가 있다. 본 논문에서는 유전자 프로그래밍으로부터 획득된 규칙의 구조적 다양성을 분석하여 결합하는 앙상블 기법을 제안한다. 유전자 프로그래밍으로 해석 가능한 분류 규칙을 생성하고 그들 사이의 다양성을 측정한 뒤, 이들 중 다양한 규칙의 집합을 결합하여 분류를 수행한다. 유전 발현 데이타로부터 림프종 암, 폐 암, 난소 암 등을 분류하는 문제를 대상으로 실험하여 제안하는 방법의 유용성을 검증하였다. 앙상블 시 분류 규칙 사이의 다양성을 분석하여 결합한 결과, 다양성을 고려하지 않을 때보다 높은 분류 성능을 획득하였고, 개별 분류 규칙들 사이의 다양성에 따라서 정분류율이 증가하는 것도 확인하였다.
피부암은 세계에서 가장 흔한 질병 중 하나로 국내에선 발병률이 지난 5년 동안 약 100%가 증가했고 미국에선 매년 500만여 명이 피부암을 진단받는다. 피부암은 주로 자외선의 노출로 피부 조직이 오랜 시간 손상되면서 발생하게 된다. 피부암의 악성종양인 흑색종은 피부 위에서 발생하는 멜라닌 세포 모반과 생김새가 유사해 2차 징후가 발생하지 않는 한 일반인이 자각하기 어려운 점이 있다. 본 논문에서는 이러한 피부암의 조기 발견과 분류를 위해 피부암 병변 윤곽선 검출 알고리즘과 피부암 병변 분류를 수행하는 딥러닝 모델인 CRNN을 제안한다. 실험 결과 본 논문에서 제안하는 윤곽선 검출 알고리즘을 이용할 시 분류 정확도가 97%로 가장 높은 정확도를 보였고 Canny 알고리즘의 경우 78%를 보였고 Sobel의 경우 55%, Laplacian의 경우 46%를 보였다.
대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
/
pp.706-709
/
2006
Cancer is one of the major causes of death; however, the survival rate can be increased if discovered at an early stage for timely treatment. According to the statistics of the World Health Organization of 2002, breast cancer was the most prevalent cancer for all cancers occurring in women worldwide, and it account for 16.8% of entire cancers inflicting Korean women today. In order to classify the type of breast cancer whether it is benign or malignant, this study was conducted with the use of the discriminant analysis and the decision tree of data mining with the breast cancer data disclosed on the web. The discriminant analysis is a statistical method to seek certain discriminant criteria and discriminant function to separate the population groups on the basis of observation values obtained from two or more population groups, and use the values obtained to allow the existing observation value to the population group thereto. The decision tree analyzes the record of data collected in the part to show it with the pattern existing in between them, namely, the combination of attribute for the characteristics of each class and make the classification model tree. Through this type of analysis, it may obtain the systematic information on the factors that cause the breast cancer in advance and prevent the risk of recurrence after the surgery.
유방암은 전체 여성의 암환자 중 두 번째로 많으며, 여성의 암으로 인한 사망 원인으로 가장 높은 것으로 나타났다. 유방암은 조기 발견 경우 완치율이 92%에 이른다. 하지만, 조기 발견을 하지 못할 경우 유방암은 전이율이 매우 높다. 암세포의 전이는 암의 진행이 많이 될수록 다른 장기로의 전이가 더욱 잘 되는 것으로 나타났다. 암의 조기 진단은 삶의 질을 높일 수 있는 중요한 요소이다. 유방암을 검사하는 방법으로는 맘모그래피(Mammography), 초음파, 맘모톰(momotome) 등이 있다. 그 중 맘모그래피는 검사자에게 통증이 적을 뿐 아니라, 쉽게 접근할 수 있어 유방암 검사에 유용하게 사용된다. 본 논문에서는 유방암 진단 데이터로 맘모그래프 데이터를 사용하였다. 본 논문에서는 뉴럴네트워크인 NEWFM(Neural network with weighted fuzzy membership function)를 사용하여 암 조기 진단을 위한 클래스를 분류하였다. NEWFM을 이용하여 데이터를 학습시킨 후 유방암 데이터 분류 결과 정확도가 84.4391%가 나타났다.
특정 질병 진단을 위한 병리 검사는 필수적이며, 최근 이러한 분야의 시간적, 인적 자원의 필요성을 줄이기 위해 인공 지능을 활용한 암세포의 자동분류가 가능한 시스템 구축에 관련된 연구가 활발하게 진행되고 있다. 하지만, 이전 연구에서는 제한적인 심층학습 알고리즘에 기인한 비교적 낮은 정확도로 데이터 처리에 한계가 존재하였다. 본 연구에서는 심층 학습의 일종인 Convolution Neral Network를 통해 4종류의 암세포를 4 Class Classifciation을 시행하는 방법을 제안한다. EfficientNet, ResNet, Inception을 사용하였으며 여러 하이퍼 파라미터 튜닝을 통해 얻은 모델을 앙상블 하여 최종적으로 97.26의 정확도를 얻을 수 있었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제7권1호
/
pp.68-80
/
2013
Lung cancer is considered to be the leading cause of cancer death worldwide. A technique commonly used consists of analyzing sputum images for detecting lung cancer cells. However, the analysis of sputum is time consuming and requires highly trained personnel to avoid errors. The manual screening of sputum samples has to be improved by using image processing techniques. In this paper we present a Computer Aided Diagnosis (CAD) system for early detection and diagnosis of lung cancer based on the analysis of the sputum color image with the aim to attain a high accuracy rate and to reduce the time consumed to analyze such sputum samples. In order to form general diagnostic rules, we present a framework for segmentation and extraction of sputum cells in sputum images using respectively, a Bayesian classification method followed by region detection and feature extraction techniques to determine the shape of the nuclei inside the sputum cells. The final results will be used for a (CAD) system for early detection of lung cancer. We analyzed the performance of a Bayesian classification with respect to the color space representation and quantification. Our methods were validated via a series of experimentation conducted with a data set of 100 images. Our evaluation criteria were based on sensitivity, specificity and accuracy.
This paper addresses a problem of classifying human breast cancer into its subtypes. A main ingredient in our approach is kernel machines such as support vector machine (SVM). kernel principal component analysis (KPCA). and kernel partial least squares (KPLS). In the task of breast cancer classification, we employ both SVM and KPLS and compare their results. In addition to this classification. we also analyze the patterns of clinical outcomes in the feature space. In order to visualize the clinical outcomes in low-dimensional space, both KPCA and KPLS are used. It turns out that these methods are useful to identify correlations between clinical outcomes and the nonlinearly protected expression profiles in low-dimensional feature space.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.