• Title/Summary/Keyword: cancer cell line

Search Result 1,471, Processing Time 0.026 seconds

Effects of Artemisia capillaris Methanol Extract on the Amounts of Splenocytes-derived Cytokines in Tumor Cells Inoculated Mice (인진쑥 Methanol 추출물이 암이 유발된 마우스의 비장세포 유래 Cytokine 함량에 미치는 영향)

  • Kim, Hong-Tae;Ku, Sae-Kwang;Kim, Ju-Wan;Jin, Tae-Won;Koo, Sung-Wook;Lim, Mee-Kyung;Do, Yoon-Jung;Jang, Kwang-Ho;Oh, Tae-Ho;Lee, Keun-Woo
    • Journal of Veterinary Clinics
    • /
    • v.26 no.5
    • /
    • pp.408-412
    • /
    • 2009
  • The Artemisia capillaris THUNB is a perennial herb that belongs to the family Compositae spp. and probably the most common plant among the various herbal folk remedies being used in the treatment of abdominal pain, hepatitis, chronic liver disease, jaundice and coughing in Korea. This experiment was conducted to investigate the effects of Artemisia capillaris extracts on the amounts of splenocytes-derived cytokine ($TNF-{\alpha},\;IL-1{\beta}$ and IL-10). In in vivo experimental tests using 210 ICR mice with Hepa-1c1c7 or sarcoma 180 cancer line, splenocytes derived cytokine contents were significantly (p < 0.05) reduced in the Hepa-1c1c7 and Sarcoma 180 inoculated vehicle controls, HP and SP, compared to those of the intact vehicle control on both the $28^{th}$ day and the $42^{nd}$ day, respectively. However, these decreases of $TNF-{\alpha},\;IL-1{\beta}$ and IL-10 levels induced by tumor inoculations were significantly (p < 0.01, p < 0.05) inhibited by mACH (Artemisia capillaris methanol extracts) treatment regardless of the type of experiments and tumor cells inoculated. The results suggest that Artemisia capillaris methanol extracts have prominent anti-inflammation effects on the cancer cell lines Hepa-1c1c7 and Sarcoma 180.

Reconstruction of Hard Palatal Defect using Staged Operation of the Prelaminated Radial Forearm Free Flap (부분층 피부이식으로 전판상화된 전완유리피판을 이용한 경구개 결손의 재건)

  • Choi, Eui Chul;Kim, Jun Hyuk;Nam, Doo Hyun;Lee, Young Man;Tak, Min Sung
    • Archives of Craniofacial Surgery
    • /
    • v.11 no.1
    • /
    • pp.53-57
    • /
    • 2010
  • Purpose: The radial forearm fasciocutaneous free flap is currently considered as the ideal free flap for reconstruction of mucosal and soft tissue defects of the palate. But the availability of stably attached oral and nasal mucosal lining is needed. In addition to this, for better operation field, operating convenience and esthetics, we planned a prelaminated radial forearm free flap. Methods: A 64-year-old male patient was admitted due to a $4{\times}4.5cm$ full through defect in the middle of the hard palate caused by peripheral T cell lymphoma with actinomycosis. In the first stage, the radial forearm flap was elevated, tailored to fit the hard palate defect, and then it positioned up-side down with split thickness skin graft. Two weeks later, the prelaminated radial forearm free flap was re-elevated and transferred to the palatal defect. One side covered with grafted skin was used to line the nasal cavity, and the other side (the cutaneous portion of the radial forearm flap) was used to line the oral cavity. Results: The prelamination procedure was relatively easy and useful. The skin graft was well taken to the flap. After 2nd stage operation, the flap survived uneventfully. There was no prolapse of the inset flap into the oral cavity and the cutaneous portion of the flap was mucosalized. The procedure was very successful and the patient can enjoy normal rigid diet and speech. Conclusion: The use of prelaminated radial forearm free flap for hard palate reconstruction is an excellent method to restore oral function. Based upon the result of this case, microvascular free flap transfer with prelaminated procedure is a valid alternative to the prosthetic obturator for palatal defect that provides an improved quality of life. It should be considered as an integral component of head and neck cancer therapy and rehabilitation.

Sodium Salicylate(NaSaL) Induces Apoptosis of NCI-H1299 Lung Carcinoma Cells via Activation Caspase-3 Protease (NCI-H1299 폐암 세포주에서 Caspase-3 Protease 활성을 통한 Sodium Salicylate(NaSaL)의 세포고사)

  • Shim, Hyeok;Yang, Sei-Hoon;Bak, Sang-Myeon;Jeong, Eun-Taik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.53 no.5
    • /
    • pp.485-496
    • /
    • 2002
  • Background : Nonsteroidal anti-inflammatory drugs (NSAIDs) are useful in the chemoprevention of colon cancers. Continuous NSAID use results in a 40% to 50% reduction in the relative risk of colorectal cancer. The precise mechanism by which NSAIDs prevent and/or cause the regression of colorectal tumors is not known. Some investigators have reported that certain NSAIDs induce apoptosis and alter the expression of the cell cycle regulatory genes in some carcinoma cells when administered at a relatively high concentration. However, the possibility of NSAIDs application as chemopreventive agents in lung cancers remains to be elucidated. To address this question, the human lung cancer cell line NCI-H1299 was used to investigate whether or not NSAIDs might induce the apoptotic death of NCI-H1299 cells. Methods : A viability test was carried out using a MTT assay. Apoptosis was measured by flow cytometric analysis and unclear staining(DAPI). The talytic activity of the caspase family was measured by the fluirigenic cleavage of biosubstrates. To define the mechanical basis of apoptosis, western blot was performed to analyze the expression of the death substrates(PARP and ICAD). Results : NaSaL significantly decreased the viability of the NCI-H1299 cells, which was revealed as apoptosis characterized by an increase in the $subG_0/G_1$ population and unclear fragmentation. The catalytic activity of caspase-3 protease began to increase after 24 Hr and reached a peak 30 Hr after treatment with 10 mM NaSaL. In contrast, caspase-6, 8, and 9 proteases did not have a significantly altered enzymatic activity. Consistent with activation of caspase-3 protease, NaSaL induced the cleavage of the protease biosubstrate. Conclusion : NaSaL induces the apoptotic death of NCI-H1299 human lung cancer cells via the activation of caspase-3 protease.

Effect of Immune System on Retrovirus-Mediated Herpes Simplex Virus Thymidine Kinase Gene Therapy (면역체계가 Retroviral Vector로 이입한 Herpes Simplex Virus Thymidine Kinase 유전자치료에 미치는 영향)

  • Park, Jae-Yong;Joo, So-Young;Chang, Hee-Jin;Son, Ji-Woong;Kim, Kwan-Young;Kim, Keong-Seok;Kim, Chang-Ho;Park, Jae-Ho;Lee, Jong-Ki;Jung, Tae-Hoon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.2
    • /
    • pp.229-240
    • /
    • 1999
  • Background: The impact of the immune response on cancer gene therapy using viral vectors to deliver a "suicide gene" is currently unclear. A vigrous immune response targeted at viral proteins or transgene may enhance the efficacy of tumor destruction and even augment responses to tumor antigens. These responses may involve the release of cytokines and stimulation of tumor specific cytotoxic T-lymphocytes that enhance therapeutic efficacy. On the other hand, a vigorous rapid cellular immune response may destroy cells expressing the therapeutic gene and attenuate the response to therapy. Furthermore, development of neutralizing antibody responses may prevent readministration of virus, a potentially significant limitation. Evaluating the significance of these limitations in animal models and developing solutions are therefore of obvious importance. Methods: After retroviral transduction of mouse mesothelioma cell line(AB12) with Herpes Simplex Virus thymidine kinase (HSVtk) gene in vitro, subcutaneous flank tumors were established. To study the effect of intact immune system on efficacy of tumor erradication, the ability of the HSVtk/ganciclovir system to inhibit tumor growth was compared among normal Balb/c mice, immunodeficient Balb/c-nude and SCID mice, and Balb/c mice immunosuppressed with cyclosporin. Results: Ganciclovir treatment resulted in greater inhibition of tumor growth in Balb/c mice compared with immunodeficient Balb/c-nude mice and SCID mice(in immunodeficient mice, there were no growth inhibition by ganciclovir treatment). Ganciclovir treatment resulted in greater inhibition of tumor growth in noncyclosporin (CSA) treated Balb/c mice compared with CSA treated Balb/c mice. On day 8, mean ganciclovir-treated tumor volume were 65% of control tumor volume in Balb/c mice versus 77% control tumor volume in CSA-treated Balb/c mice. This effect was still evident during therapy (day 11 and 13). On day 13, non-CSA treated tumor volume was 35% of control tumor volume versus 60% of control tumor volume in CSA treated Balb/c mice. Duration of expression of HSVtk was not affected by the immunosuppression with CSA. Conclusion: These results indicate that the immune responses against retrovirally transduced cells enhance the efficacy of the HSVtk/ganciclovir system. These findings have important implications for clinical trials using currently available retrovirus vectors as well as for future vector design.

  • PDF

The Role of Phosphofructokinase-2/Fructose-2,6-bisphosphatase 2 (PFKFB2) in Wnt-induced Epithelial-mesenchymal Transition (Wnt에 의한 epithelial-to-mesenchymal transition에서 PFKFB2의 역할)

  • Lee, Su Yeon;Ju, Min Kyung;Jeon, Hyun Min;Kim, Cho Hee;Park, Hye Gyeong;Kang, Ho Sung
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1245-1255
    • /
    • 2017
  • Most cancer cells produce ATP predominantly through glycolysis instead of through mitochondrial oxidative phosphorylation, even in the presence of oxygen. The phenomenon is termed the Warburg effect, or the glycolytic switch, and it is thought to increase the availability of biosynthetic precursors for cell proliferation. EMTs have critical roles in the initiation of the invasion and metastasis of cancer cells. The glycolytic switch and EMT are important for tumor development and progression; however, their correlation with tumor progression is largely unknown. The Snail transcription factor is a major factor involved in EMT. The Snail expression is regulated by distal-less homeobox 2 (Dlx-2), a homeodomain transcription factor that is involved in embryonic and tumor development. The Dlx-2/Snail cascade is involved in Wnt-induced EMTs and the glycolytic switch. This study showed that in response to Wnt signaling, the Dlx-2/Snail cascade induces the expression of PFKFB2, which is a glycolytic enzyme that synthesizes and degrades fructose 2, 6-bisphosphate (F2,6BP). It also showed that PFKFB2 shRNA prevents Wnt-induced EMTs in the breast-tumor cell line MCF-7. The prevention indicated that glycolysis is linked to Wnt-induced EMT. Additionally, this study showed PFKFB2 shRNA suppresses in vivo tumor metastasis and growth. Finally, it showed the PFKFB2 expression is higher in breast, colon and ovarian cancer tissues than in matched normal tissues regardless of the cancers' stages. The results demonstrated that PFKFB2 is an important regulator of EMTs and metastases induced by the Wnt, Dlx-2 and Snail factors.

Loss of EMP2 Inhibits Melanogenesis of MNT1 Melanoma Cells via Regulation of TRP-2

  • Enkhtaivan, Enkhmend;Kim, Hyun Ji;Kim, Boram;Byun, Hyung Jung;Yu, Lu;Nguyen, Tuan Minh;Nguyen, Thi Ha;Do, Phuong Anh;Kim, Eun Ji;Kim, Kyung Sung;Huy, Hieu Phung;Rahman, Mostafizur;Jang, Ji Yun;Rho, Seung Bae;Lee, Ho;Kang, Gyeoung Jin;Park, Mi Kyung;Kim, Nan-Hyung;Choi, Chang Ick;Lee, Kyeong;Han, Hyo Kyung;Cho, Jungsook;Lee, Ai Young;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.30 no.2
    • /
    • pp.203-211
    • /
    • 2022
  • Melanogenesis is the production of melanin from tyrosine by a series of enzyme-catalyzed reactions, in which tyrosinase and DOPA oxidase play key roles. The melanin content in the skin determines skin pigmentation. Abnormalities in skin pigmentation lead to various skin pigmentation disorders. Recent research has shown that the expression of EMP2 is much lower in melanoma than in normal melanocytes, but its role in melanogenesis has not yet been elucidated. Therefore, we investigated the role of EMP2 in the melanogenesis of MNT1 human melanoma cells. We examined TRP-1, TRP-2, and TYR expression levels during melanogenesis in MNT1 melanoma cells by gene silencing of EMP2. Western blot and RT-PCR results confirmed that the expression levels of TYR and TRP-2 were decreased when EMP2 expression was knocked down by EMP2 siRNA in MNT1 cells, and these changes were reversed when EMP2 was overexpressed. We verified the EMP2 gene was knocked out of the cell line (EMP2 CRISPR/Cas9) by using a CRISPR/Cas9 system and found that the expression levels of TRP-2 and TYR were significantly lower in the EMP2 CRISPR/Cas9 cell lines. Loss of EMP2 also reduced migration and invasion of MNT1 melanoma cells. In addition, the melanosome transfer from the melanocytes to keratinocytes in the EMP2 KO cells cocultured with keratinocytes was reduced compared to the cells in the control coculture group. In conclusion, these results suggest that EMP2 is involved in melanogenesis via the regulation of TRP-2 expression.

A Study of matrix metalloproteinase-9 inhibitor in root bark of ulmus davidiana planchon (유근피내의 Matrix Metalloproteinase-9 활성 억제제에 관한 연구)

  • Kong, Kwang-Hoon;Han, Kee-Jung;Lee, Kwang-Soo;Cho, Sung-Hye
    • Analytical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.104-111
    • /
    • 2005
  • Several solvents were used to fractionate an extract obtained from the chapped root bark of Ulmus davidiana Planchon. The each fractionary part was condensed under reduced pressure and then examined to investigate the inhibitory effect on MMPs by modified gelatin zymography, where EA fraction showed the inhibition effect on the activity of MMPs. A compound showing inhibition effect on the MMPs was isolated and purified from EA fraction. Under IR, $^1H$- and $^{13}C$- NMR analyses it is very close to a catethin. This substance showed 48% inhibition effect on measurement of MMP-9 activity at 5 mM and 43% at 10 mM. To verify the effect of this substance on cells, human hepatoma, SK-Hep-1 cells as a cancer model, and Chang liver cells as a normal model were selected. MTT assay was performed to examine the cell viability by treatment of $1{\mu}L/mL$ of the purified substance on cells. The purified substance showed negligible toxicity on human liver cell line.

ATM-induced Radiosensitization in Vitro and in Vivo

  • Choi, E.K.;Ahn, S.D.;Rhee, Y.H.;Chung, H.S.;Ha, S.W.;Song, C.W.;Griffin, R.J.;Park, H.J.
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.3
    • /
    • pp.233-237
    • /
    • 2003
  • It has been known that ATM plays a central role in response of cells to ionizing radiation by enhancing DNA repair. We have investigated the feasibility of increasing radiosensitivity of tumor cells with the use of ATM inhibitors such as caffeine, pentoxifylline and wortmannin. Human colorectal cancer RKO.C cells and RKO-ATM cells (RKO cells overexpressing ATM) were used in the present study. The clonogenic cell survival in vitro indicated that RKO-ATM cells were markdely radioresistant than RKO.C cells. Treatment with 3 mM of caffeine significantly increased the radiosensitivity of cells, particulary the RKO-ATM cells, so that the radiosensitivity of RKO.C cells and RKO-ATM cells were almost similar. The radiation induced G2/M arrest in RKO-ATM cells was noticeably longer than that in RKO.C cells and caffeine treatment significantly reduced the length of the radiation induced G2/M arrest in both RKO.C and RKO-ATM cells. Pentoxifylline and wortmannin were also less effective than caffeine to radiosensitize RKO.C or RKO-ATM cells. However, wortmannin was more effective than caffeine against human lung adenocarcinoma A549 cells indicating the efficacy of ATM inhibitor to increase radiosensitivity is cell line dependent. For in vivo study, RKO.C cells were injected s.c. into the hind-leg of BALB/C-nuslc nude mice, and allowed to grow to 130mm3 tumor. The mice were i.p. injected with caffeine solution or saline and the tumors irradiated with 10 Gy of X-rays. The radiation induced growth delay was markedly increased by 1-2 mg/g of caffeine. It was concluded that caffeine increases radiosensitivity of tumor cells by inhibiting ATM kinase function, thereby inhibiting DNA repair, that occurs during the G2/M arrest after radiation.

Isolation and Characterization of Kimchi Lactic Acid Bacteria Showing Anti-Helicobacter pylori Activity (Helicobacter pylori 억제능 김치 유산균의 분리와 특성 규명)

  • Lee, Youl;Chang, Hae-Choon
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.2
    • /
    • pp.106-114
    • /
    • 2008
  • One bacterium, which showed strong antagonistic activity against H. pylori KCCM 41756, was isolated from kimchi. The strain NO1 was designated as Lactobacillus plantarum NO1 based on Gram staining, biochemical properties, and 16S rRNA gene sequencing. The culture medium $(2{\sim}4{\mu}g/ml)$ of Lb. plantarum NO1 reduced $(40{\sim}60%)$ the urease activity of H. pylori KCCM 41756. Lb. plantarum NO1 inhibited the binding of H. pylori to human gastric cancer cell line, AGS cells, by more than 33%. Lb. plantarum NO1 exhibited high viability (maintained initial viable cell count of $10^9CFU/ml$) in 0.05 M sodium phosphate buffer (pH 3.0) for 2 h, in artificial gastricjuice for 2 h and in 0.3%, 0.5% oxgall for 24 h. Hemolysis phenomena did not observed when Lb. plantarum NO1 was incubated in the blood agar media. We concluded that Lb. plantarum NO1 can be a good candidate as a probiotic, harboring anti-H. pylori activity.

Evaluation of DNA Damage by Mercury Chloride (II) and Ionizing Radiation in HeLa Cells (이온화 방사선 및 염화수은(II)에 의한 자궁경부암 세포의 DNA 손상 평가)

  • Woo Hyun-Jung;Kim Ji-Hyang;Antonina Cebulska-Wasilewska;Kim Jin-Kyu
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.1 s.61
    • /
    • pp.46-52
    • /
    • 2006
  • The mercury is among the most highly bioconcentrated toxic trace metals. Many national and international agencies and organisations have targeted mercury for the possible emission control. The mercury toxicity depends on its chemical form, among which alkylmercury compounds are the most toxic. A human cervix uterus cancer cell line HeLa cells was employed to investigate the effect of the toxic heavy metal mercury (Hg) and ionizing radiation. In the in vitro comet assays for the genotoxicity in the HeLa cells, the group of Hg treatment after irradiation showed higher DNA breakage than the other groups. The tail extent moment and olive tail moment of the control group were $4.88{\pm}1.00\;and\;3.50{\pm}0.52$ while the values of the only Hg treatment group were $26.90{\pm}2.67\;and\;13.16{\pm}1.82$, respectively. The tail extent moment and olive tail moment of the only 0.001, 0.005, 0.01 Hg group were $12.24{\pm}1.82,\;8.20{\pm}2.15,\;20.30{\pm}1.30,\;12.26{\pm}0.52,\;40.65{\pm}2.94\;and \;20.38{\pm}1.49$, respectively. In the case of Hg treatment after irradiation, the tail extent moment and olive tail moment of the 0.001, 0.005, 0.01 Hg group were $56.50{\pm}3.93,\;32.69{\pm}2.48,\;62.03{\pm}5.14,\;31.56{\pm}1.97,\;72.73{\pm}3.70\;and \;39.44{\pm}3.23$, respectively. The results showed that Hg induced DNA single-strand breaks or alkali labile sites as assessed by the Comet assay. It is in good agreement with the reported results. The mercury inhibits the repair of DNA. The bacterial formamidopyrimidine-DNA glycosylase (Epg protein) recognizes and removes some oxidative DNA base modifications. Enzyme inactivation by Hg (II) may therefore be due either to interactions with rysteine residues outside the metal binding domain or to very high-affinity binding of Hg (II) which readily removes Zn (II) from the zinc finger.