• Title/Summary/Keyword: cancer cell line

Search Result 1,452, Processing Time 0.031 seconds

Effects of Tumor Microenvironmental Factors on DNA Methylation and Radiation Sensitivity in A549 Human Lung Adenocarcinoma

  • Oh, Jung-Min;Kim, Young-Eun;Hong, Beom-Ju;Bok, Seoyeon;Jeon, Seong-Uk;Lee, Chan-Ju;Park, Dong-Young;Kim, Il Han;Kim, Hak Jae;Ahn, G-One
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.2
    • /
    • pp.66-74
    • /
    • 2018
  • Background: Tumor response to anticancer therapies can much be influenced by microenvironmental factors. In this study, we determined the effect of these microenvironmental factors on DNA methylation using A549 human lung adenocarcinoma cell line. Materials and Methods: We subjected A549 cells to various conditions mimicking tumor microenvironment including hypoxia, acidosis (sodium lactate), oxidative stress ($H_2O_2$), bystander effect (supernatant from doxorubicin (Dox)-treated or irradiated cells), and immune cell infiltration (supernatant from THP-1 or Jurkat T cells). Genomic DNA was isolated from these cells and analyzed for DNA methylation. Clonogenic cell survival, gene expression, and metabolism were analyzed in cells treated with some of these conditions. Results and Discussion: We found that DNA methylation level was significantly decreased in A549 cells treated with conditioned media from Dox-treated cells or Jurkat T cells, or sodium lactate, indicating an active transcription. To determine whether the decreased DNA methylation affects radiation sensitivity, we exposed cells to these conditions followed by 6 Gy irradiation and found that cell survival was significantly increased by sodium lactate while it was decreased by conditioned media from Dox-treated cells. We further observed that cells treated with conditioned media from Dox-treated cells exhibited significant changes in expression of genes including BAX and FAS (involved in apoptosis), NADPH dehydrogenase (mitochondria), EGFR (cellular survival) and RAD51 (DNA damage repair) while sodium lactate increased cellular metabolism rather than changing the gene expression. Conclusion: Our results suggest that various tumor microenvironmental factors can differentially influence DNA methylation and hence radiosensitivity and gene expression in A549 cancer cells.

BCR/ABL mRNA Targeting Small Interfering RNA Effects on Proliferation and Apoptosis in Chronic Myeloid Leukemia

  • Zhu, Xi-Shan;Lin, Zi-Ying;Du, Jing;Cao, Guang-Xin;Liu, Gang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.12
    • /
    • pp.4773-4780
    • /
    • 2014
  • Background: To investigate the effects of small interference RNA (siRNA) targeting BCR/ABL mRNA on proliferation and apoptosis in the K562 human chronic myeloid leukemia (CML) cell line and to provide a theoretical rationale and experimental evidence for its potential clinical application for anti-CML treatment. Materials and Methods: The gene sequence for BCR/ABL mRNA was found from the GeneBank. The target gene site on the BCR/ABL mRNA were selected according to Max-Planck-Institute (MPI) and rational siRNA design rules, the secondary structure of the candidate targeted mRNA was predicted, the relevant thermodynamic parameters were analyzed, and the targeted gene sequences were compared with BLAST to eliminate any sequences with significant homology. Inhibition of proliferation was evaluated by MTT assay and colony-formation inhibiting test. Apoptosis was determined by flow cytometry (FCM) and the morphology of apoptotic cells was identified by Giemsa-Wright staining. Western blotting was used to analyze the expression of BCR/ABL fusion protein in K562 cells after siRNA treatment. Results: The mRNA local secondary structure calculated by RNA structure software, and the optimal design of specific siRNA were contributed by bioinformatics rules. Five sequences of BCR/ABL siRNAs were designed and synthesized in vitro. Three sequences, siRNA1384, siRNA1276 and siRNA1786, which showed the most effective inhibition of K562 cell growth, were identified among the five candidate siRNAs, with a cell proliferative inhibitory rate nearly 50% after exposure to 12.5nmol/L~50nmol/L siRNA1384 for 24,48 and 72 hours. The 50% inhibitory concentrations ($IC_{50}$) of siRNA1384, siRNA1276 and siRNA1786 for 24hours were 46.6 nmol/L, 59.3 nmol/L and 62.6 nmol/L, respectively, and 65.668 nmol/L, 76.6 nmol/L, 74.4 nmol/L for 72 hours. The colony-formation inhibiting test also indicated that, compared with control, cell growth of siRNA treated group was inhibited. FCM results showed that the rate of cell apoptosis increased 24 hours after transfecting siRNA. The results of annexinV/PI staining indicated that the rate of apoptosis imcreased (1.53%, 15.3%, 64.5%, 57.5% and 21.5%) following treamtne with siRNAs (siRNA34, siRNA372, siRNA1384, siRNA1276 and siRNA1786). Morphological analysis showed td typical morphologic changes of apoptosis such as shrunken, fragmentation nucleus as well as "apoptotic bodies" after K562 cell exposure to siRNA. Western blot analysis showed that BCR/ABL protein was reduced sharply after a single dose of 50nmol/L siRNA transfection. Conclusions: Proliferation of K562 cells was remarkbly inhibited by siRNAs (siRNA1384, siRNA1276 and siRNA1786) in a concentration-dependent manner in vitro, with effective induction of apoptosis at a concentration of 50 nmol/L. One anti-leukemia mechanism in K562 cells appeared that BCR/ABL targeted protein was highly down-regulated. The siRNAs (siRNA1384, siRNA1276 and siRNA1786) may prove valuable in the treatment of CML.

Apoptotic Effect of Extract from Artemisia annua Linné by Akt/mTOR/GSK-3β Signal Pathway in Hep3B Human Hepatoma Cells (Hep3B 간암세포에서 개똥쑥추출물로부터 Akt-mTOR-GSK3β 신호경로에 의한 apoptosis 효과)

  • Kim, Eun Ji;Kim, Guen Tae;Kim, Bo Min;Lim, Eun Gyeong;Ha, Sung Ho;Kim, Sang-Yong;Kim, Young Min
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.764-771
    • /
    • 2016
  • Extracts from Artemisia annua Linné (AAE) have been known to possess various functions, including anti-bacterial, anti-virus, and anti-oxidant effects. However, the mechanism of those effects of AAE is not well-known. The aim of this study was to analyze the inhibitory effects of AAE on cell proliferation of the human hepatoma cell line (Hep3B) and to examine its effects on apoptosis. Activation by phosphorylation of Akt is cell proliferation through the phosphorylation of TSC2, mTOR, and GSK-3β. We suggested that AAE may exert cancer cell apoptosis through Akt/mTOR/GSK-3β signal pathways and mitochondria-mediated apoptotic proteins. For this, we examined the effects of extracts of AAE on cell proliferation according to treatment concentration. Treatment with AAE not only reduced cell viability, but also resulted in the induced release of lactate dehydrogenase (LDH). These results were determined with a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and a lactate dehydrogenase (LDH) assay. Furthermore, we determined the effects of apoptosis through Hoechst 33342 staining, annexinⅤ-propidium iodide (PI) staining, 5,5′, 6,6′-tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine iodide (JC-1) staining, and Western blotting. Our study showed that the treatment of liver cancer cells with AAE resulted in the inhibition of Akt, TSC2, GSK-3β-phosphorylated, Bcl-2, and pro-caspase 3 and the activation of Bim, Bax, Bak, and cleaved PARP expressions. These results indicate that AAE induced apoptosis by means of a mitochondrial event through the regulate of Akt/mTOR/GSK-3β signaling pathways.

Effects of Anticancer Drug Delivery based on Microbubble and Microbubble-Nanoparticle Complex using Low-Intensity Focused Ultrasound in Breast Cancer Animal Model (유방암 동물모델에서의 저강도 집속초음파를 이용한 마이크로버블 및 마이크로버블-나노물질 복합체 기반 항암제 전달 효율 검증)

  • Baek, Hee Gyu;Ha, Shin-Woo;Huh, Hyungkyu;Jung, Byeongjin;Han, Mun;Moon, Hyungwon;Kim, Sangkyun;Lee, Hak Jong;Park, Juyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.39-47
    • /
    • 2019
  • Ultrasound sonication along with microbubble (MB) could enhance drug delivery to promote the absorption of anticancer drugs into cancers in a noninvasive and targeted manners. In this study, we verify the acute drug delivery enhancement (within an hour) of two representative focused ultrasound driven drug delivery enhancement methods (MB and Doxorubicin-coated Nanoparticle complex (MB-NP) based). Experiments were conducted using in vivo mouse model with MDA-MB-231 breast cancer cell line. Ultrasound generated by single-element 1 MHz focused ultrasound transducer was delivered in pulsed sonication consisted of 0.125 msec bursts at a pulse repetition frequency of 2 Hz for 20 seconds without a significant increase in local temperature (less than $0.1^{\circ}C$) or hemorrhage. Doxorubicin concentrations in tumors were improved by 1.97 times in the case of MB-NP, and 1.98 times by using Doxorubicin and MB separately. These results indicate anticancer drug delivery based on MB and MB-NP can significantly improve the effect of anticancer drugs delivered to tumors in a short time period by using low-intensity focused ultrasound.

Inhibitory Effect of Steviol and Its Derivatives on Cell Migration via Regulation of Tight Junction-related Protein Claudin 8 (스테비올 및 그 유도체의 세포연접 관련 클라우딘 8 발현 조절을 통한 세포이동 저해효과)

  • Choi, Sun Kyung;Cho, Nam Joon;Cho, Uk Min;Shim, Joong Hyun;Kim, Kee K.;Hwang, Hyung Seo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.4
    • /
    • pp.403-412
    • /
    • 2016
  • The tight junction, one of Intercellular junctions, performs a variety of biological functions by bonding adjacent cells, including the barrier function to control the movement of the electrolyte and water. Recent studies have revealed that unusual expression of tight junction-related genes have been shown to be related in cancer development and progression. Recently, there are many reports that control of tight junction proteins expression is closely related to the skin moisture. In this study, we are focusing on the regulating mechanism of tight junction-associated genes by the steviol and its derivatives. Steviol, used as a sweetner, is known to chemical compound isolated from stevia plant. The MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) assay was carried out in HaCaT cells (human keratinocyte cell line) in order to determine the cytotoxicity. As a result, while steviol showing cytotoxicity from $250{\mu}M$, steviol derivatives are not cytotoxic more than $250{\mu}M$ concentration. We have observed a change in the tight junction protein via quantitative real-time PCR. Claudin 8 among tight junction proteins is only significantly reduced up to 30% in the presence of steviol. In addition, cell migration was inhibited by steviol, not by stevioside and rebaudioside. Finally, we could observe that steviol, not stevioside and rebaudioside, is able to increase the skin barrier permeability through the transepithelial electric resistance (TEER) measurements. These results suggest that the steviol and its derivatives are specifically acts on the tight junction related gene expression, but steviol derivatives are more suitable as a cosmetic material.

Effect of ω3-Fatty Acid Desaturase Gene Expression on Invasion and Tumorigenicity in Human Tongue Squamous Cell Carcinoma Cells (인체 혀의 편평세포암 세포에서 ω3-fatty acid desaturase 유전자 발현이 침윤 및 종양형성에 미치는 영향)

  • Hong, Tae-Hwa;Shin, Soyeon;Han, Seung-Hyeon;Hwang, Byung-Doo;Lim, Kyu
    • Journal of Life Science
    • /
    • v.28 no.8
    • /
    • pp.945-954
    • /
    • 2018
  • Omega-3 polyunsaturated fatty acids (${\omega}3$-fatty acid) have been found to possess anticancer properties in a variety of cancer cell lines and animal models, but their effects in human tongue squamous cell carcinomas (SCCs) remain unclear. This study was designed to examine the effect of ${\omega}3$-fatty acid desaturase (fat-1) gene expression on invasion and tumorigenicity in human tongue SCC cells and the molecular mechanism of its action. Docosahexaenoic acid (DHA) treatment inhibited in vitro invasion in a dose-dependent manner. In zymography, matrix metalloproteinase-9 (MMP-9) and Matrix metallopeptidase-2 (MMP-2) activities were reduced, and MMP-9 and MMP-2 promoter activities were inhibited by the DHA treatment. In addition, cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) promoter reporter activities were inhibited in SCC-4 and SCC-9 cells after the DHA treatment. To investigate the effect of a high level of endogenous ${\omega}3$ fatty acids, a stable SCC-9 cell line expressing the ${\omega}3$-desaturase gene (fSCC-9sc) was generated. The growth rate and colony-forming capacity of fSCC-9sc were remarkably decreased as compared with those of fSCC-9cc. Likewise, the tumor size and volume of fSCC-9sc implanted into nude mice were significantly inhibited, with increases in the cell death index. Furthermore, a transwell chamber invasion assay showed a reduction in cell invasion of the fSCC-9sc lines when compared with that of the fSCC-9cc line. These findings suggested that fat-1 gene expression inhibited tumorigenicity, as well as invasion in human tongue SCC cells. Thus, utilization of ${\omega}3$ fatty acids may represent a promising therapeutic approach for chemoprevention and the treatment of human tongue SCCs.

Studies on the Radiation Induced Apoptosis by Morphological and Biochemical Analysis in A431 Cells (방사선에 조사된 인체세포주(A431)에서 형태학적 분석법과 생화학적 분석법을 이용한 방사선 유도 세포고사에 관한 연구)

  • Choi, Keun-Hee;Bom, Hee-Seung;Kim, Ji-Yeul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.3
    • /
    • pp.306-315
    • /
    • 1999
  • Purpose: We performed this study to evaluate the process of radiation induced apoptosis in A431 skin epithelial cancer cell line. Materials and Methods: Low to high dose radiation (0, 2, 5, 10, 25 Gy) was given to A431 cells by Cs-137 cell irradiator. Apoptosis was evaluated by cell morphology, dye exclusion test, and DNA laddering. Results: Cell viability decreased as the radiation dose increased. Number of apoptotic bodies increased as radiation dose increased. It increased most significantly at 12 hours after irradiation. Lactate dehydrogenase activity in culture medium increased according to radiation dose and time after irradiation. DNA ladders could be identified in irradiated cells, but, it had no correlation with radiation dose or time after irradiation. Conclusion: Radiation-induced apoptosis which was the main course of cell death in A431 cells could be analyzed quantitatively by counting apoptotic bodies under microscope. Apoptosis increased as radiation dose increased.

  • PDF

Early or Late Gefitinib, Which is Better for Survival? - Retrospective Analysis of 228 Korean Patients with Advanced or Metastatic NSCLC

  • Kim, Dong-Gun;Kim, Min-Kyoung;Bae, Sung-Hwa;Koh, Sung-Ae;Park, Sung-Woo;Kim, Hyun-Je;Kim, Myung-Jin;Jang, Hyo-Jin;Lee, Kyung-Hee;Lee, Kwan-Ho;Chung, Jin-Hong;Shin, Kyung-Chul;Ryoo, Hun-Mo;Hyun, Myung-Soo
    • Journal of Yeungnam Medical Science
    • /
    • v.28 no.1
    • /
    • pp.31-44
    • /
    • 2011
  • Background: The optimal timing of treatment with EGFR-tyrosine kinase inhibitors (EGFR-TKI) in NSCLC patients has not yet been determined. Methods: We separated 228 patients with advanced /metastatic NSCLC treated with gefitinib into an early gefitinib group (patients who received gefitinib as first- or second-line treatment) and a delayed gefitinib group (patients who received gefitinib as third or fourth-line treatment) and attempted to determine whether the timing of gefitinib treatment affected clinical outcomes. Results: Median overall survival (OS), progression free survival (PFS), and median OS from first-line treatment of advanced/metastatic disease (OSt) for 111 patients in the early gefitinib group were 6.2 months, 3.3 months, and 11.6 months. However, median OS, PFS, and OSt for 84 patients in the delayed gefitinib group were 7.8 months, 2.3 months, and 22.7 months. No differences in OS and PFS were observed between the 2 groups. However, OSt was significantly longer in the delayed gefitnib group. Timing of gefitinib therapy was one of the independent predictors of OSt. Hb ${\geq}$ 10 g/dl, and having never smoked, and ECOG performance status ${\leq}1$ were independent predictors of better PFS. Conclusion:Deferral of gefitinib therapy in patientswith advanced ormetastatic NSCLC may be preferable if they are able to tolerate chemotherapy.

  • PDF

Priming Effect of Endotoxin in Human Alveolar Macrophage (사람 폐포대식세포에서 내독소의 Priming 효과)

  • Chung, Man-Pyo;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Han, Yong-Chol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.1
    • /
    • pp.46-53
    • /
    • 1996
  • Background: Endotoxin or lipopolysaccharide(LPS) can prime phagocytic cells such as polymorphonuclear leukocytes, monocytes or animal peritoneal macrophages to generate increased amounts of secretory products such as oxygen free radicals and tumor necrosis factor, which play an important role in developing adult respiratory distress syndrome in gram negative sepsis. Human alveolar macrophages(HAM) are continuously exposed to various stimuli inhaled into the alveoli, and the response to LPS might be different in HAM. Therefore, we investigated the effect of LPS pre-exposure on HAM adhered to plastic surface and A549 cell(type II human alveolar epithelial cell line) monolayer. Methods: HAM were isolated from bronchoalveolar lavage fluid from normal lung of the patients with localized lung cancer and esophageal cancer. LPS was exposed to HAM for 2hrs before or after adherence to plastic surface of 24-well Linbro plate and A549 cell monolayer. And then HAM was stimulated with PMA(phorbol myristate acetate) or fMLP(N-formyl-methionylleucyl-phenylalanine). The amount of hydrogen peroxide($H_2O_2$) production in the supernatant was measured on the principle of peroxidase-dependent oxidation of phenol red by hydrogen peroxide. Results: LPS pre-exposure could not enhance $H_2O_2$ production in neither HAM adhered to plastic surface nor one to A549 cell monolayer. But LPS even in the absence of PMA or fMLP stimulation directly increased $H_2O_2$ release in HAM if added after the adherence to A549 cell monolayer. Conclusion: Endotoxin does not prime HAM, but may directly activate HAM adhered to alveolar epithelial cells. Further investagation will be necessary.

  • PDF

Inhibition of pRB Phosphorylation and Induction of p21WAF1/CIP1 Occur During cAMP-induced Growth Arrest in Human Neuroblastoma Cells (인체 신경아세포종에서 cAMP 처리에 의한 pRB의 인산화 억제 및 p21WAF1/CIP1의 유도)

  • Park, Yung-Hyun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.642-650
    • /
    • 2003
  • To develop a new approach to the treatment of neuroblastoma cells we evaluated the effect of cAMP on the Ewing's sarcoma cell line CHP-100. We observed that the proliferation-inhibitory effect of cAMP analogs was due to cell cycle arrest and induction of apoptosis, which was confirmed by observing the morphological changes and DNA fragmentation. DNA flow cytometric analysis revealed that cAMP arrested the cell cycle progression at the G1 phase, which effects were associated with inhibition of phosphorylation of retinoblastoma protein (pRB) and enhanced binding of pRB and the transcription factor E2F-1. cAMP also suppressed the cyclin-dependent kinase (Cdk) 2 and cyclin E-associated kinase activity without changes of their expressions. Furthermore, cAMP induced the levels of Cdk inhibitor $p21^{WAF1/CIP1$ expression and p21 proteins induced by cAMP were associated with Cdk2. Overall, our results identify a combined mechanism involving the inhibition of pRB phosphorylation and induction of p21 as targets for cAMP, and this may explain some of its anti-cancer effects.