• Title/Summary/Keyword: camera vision

Search Result 1,386, Processing Time 0.028 seconds

Design and Implementation of Real time Monitoring System based on Web camera for safe agricultural product management (안전한 농산물 관리를 위한 웹 카메라 기반의 실시간 모니터링 시스템의 설계 및 구현)

  • Kim Tak-Chen;Ryu Kwang-Hee;Jung Hoe-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.8
    • /
    • pp.1366-1372
    • /
    • 2006
  • After the import liberalization of agricultural products, The Imported agricultural products rapidly increased market share of domestic agricultural products. But Imported agricultural products include various agricultural chemicals and food additives. In order to improve competitiveness in domestic markets of farmhouses and to secure food safety, the farmers needs to introduce Systematic support and various system. In this paper, established system that use Monitoring technology, to inform production information and management information about agricultural products to consumer by real time. Therefore unused analog camera such as CCTV(Closed-Circuit Television) for real time Monitoring. This system Used web camera that offer picture quality that is good than CCTV at place that consists network without distinction in the place. An advantage of real time Monitoring system designed multi-vision interface showing multi images on single screen and, for the purpose of the improvement in efficiency, the functions of saving images and of scheduling the time to save the images.

A Study on Detecting Moving Objects using Multiple Fisheye Cameras (다중 어안 카메라를 이용한 움직이는 물체 검출 연구)

  • Bae, Kwang-Hyuk;Suhr, Jae-Kyu;Park, Kang-Ryoung;Kim, Jai-Hie
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.4
    • /
    • pp.32-40
    • /
    • 2008
  • Since vision-based surveillance system uses a conventional camera which has a narrow field of view, it is difficult to apply it into the environment whose the ceiling is low and the monitoring area is wide. To overcome this problem, the method of increasing the number of camera causes the increase of the cost and the difficulties of camera set-up For these problems, we propose a new surveillance system based on multiple fisheye cameras which have 180 degree field of view. The proposed method handles occlusions using the homography relation between the multiple fisheye cameras. In the experiment, four fisheye cameras were set up within the area of $17{\times}14m$ at height of 2.5 m and five people wandered and crossed with one another within this area. The detection rates of the proposed system was 83.0% while that of a single camera was 46.1%.

User Positioning Method Based on Image Similarity Comparison Using Single Camera (단일 카메라를 이용한 이미지 유사도 비교 기반의 사용자 위치추정)

  • Song, Jinseon;Hur, SooJung;Park, Yongwan;Choi, Jeonghee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.8
    • /
    • pp.1655-1666
    • /
    • 2015
  • In this paper, user-position estimation method is proposed by using a single camera for both indoor and outdoor environments. Conventionally, the GPS of RF-based estimation methods have been widely studied in the literature for outdoor and indoor environments, respectively. Each method is useful only for indoor or outdoor environment. In this context, this study adopts a vision-based approach which can be commonly applicable to both environments. Since the distance or position cannot be extracted from a single still image, the reference images pro-stored in image database are used to identify the current position from the single still image captured by a single camera. The reference image is tagged with its captured position. To find the reference image which is the most similar to the current image, the SURF algorithm is used for feature extraction. The outliers in extracted features are discarded by using RANSAC algorithm. The performance of the proposed method is evaluated for two buildings and their outsides for both indoor and outdoor environments, respectively.

Comparisons of Single Photo Resection Algorithms for the Determination of Exterior Orientation Parameters (단사진의 외부표정요소 결정을 위한 후방교회법 알고리즘의 비교)

  • Kim, Eui Myoung;Seo, Hong Deok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.305-315
    • /
    • 2020
  • The purpose of this study is to compare algorithms of single photo resection, which determines the exterior orientation parameters used in fields such as photogrammetry, computer vision, robotics, etc. To this end, the algorithms were compared by generating experimental data by simulating terrain based on a camera used in aerial and close-range photogrammetry. Through experiments on aerial photographic camera that was taken almost vertically, it was possible to determine the exterior orientation parameters using three ground control points, but the Procrustes algorithm was sensitive to the configuration of the ground control points. Even in experiments with a close-range amateur camera where the attitude angles of the camera change significantly, the algorithm was sensitive to the configuration of the ground control points, and the other algorithms required at least six ground control points. Through experiments with two types of cameras, it was found that cosine lawbased spatial resection shows performance similar to that of a traditional photogrammetry algorithm because the number of iterations is short and no explicit initial values are required.

Robust Human Silhouette Extraction Using Graph Cuts (그래프 컷을 이용한 강인한 인체 실루엣 추출)

  • Ahn, Jung-Ho;Kim, Kil-Cheon;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.1
    • /
    • pp.52-58
    • /
    • 2007
  • In this paper we propose a new robust method to extract accurate human silhouettes indoors with active stereo camera. A prime application is for gesture recognition of mobile robots. The segmentation of distant moving objects includes many problems such as low resolution, shadows, poor stereo matching information and instabilities of the object and background color distributions. There are many object segmentation methods based on color or stereo information but they alone are prone to failure. Here efficient color, stereo and image segmentation methods are fused to infer object and background areas of high confidence. Then the inferred areas are incorporated in graph cut to make human silhouette extraction robust and accurate. Some experimental results are presented with image sequences taken using pan-tilt stereo camera. Our proposed algorithms are evaluated with respect to ground truth data and proved to outperform some methods based on either color/stereo or color/contrast alone.

A New Ergonomic Interface System for the Disabled Person (장애인을 위한 새로운 감성 인터페이스 연구)

  • Heo, Hwan;Lee, Ji-Woo;Lee, Won-Oh;Lee, Eui-Chul;Park, Kang-Ryoung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.229-235
    • /
    • 2011
  • Objective: Making a new ergonomic interface system based on camera vision system, which helps the handicapped in home environment. Background: Enabling the handicapped to manipulate the consumer electronics by the proposed interface system. Method: A wearable device for capturing the eye image using a near-infrared(NIR) camera and illuminators is proposed for tracking eye gaze position(Heo et al., 2011). A frontal viewing camera is attached to the wearable device, which can recognize the consumer electronics to be controlled(Heo et al., 2011). And the amount of user's eye fatigue can be measured based on eye blink rate, and in case that the user's fatigue exceeds in the predetermined level, the proposed system can automatically change the mode of gaze based interface into that of manual selection. Results: The experimental results showed that the gaze estimation error of the proposed method was 1.98 degrees with the successful recognition of the object by the frontal viewing camera(Heo et al., 2011). Conclusion: We made a new ergonomic interface system based on gaze tracking and object recognition Application: The proposed system can be used for helping the handicapped in home environment.

Real time Monitoring System using Web Camera (웹 카메라를 통한 실시간 모니터링 시스템)

  • Ryu, Kwang-Hee;Choi, Jong-Kun;Im, Young-Tae;Park, Yeon-Sik;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.667-670
    • /
    • 2005
  • As security and surveillance have become the center of interest, remote controlled CCTV(Closed-Circuit Television) market has been formed while rapid development of digital image compression technology and Internet triggered the advent of web cameras. The characteristic of web camera is that it can provide users with higher quality image than CCTV at any place where Internet access is available. However, As for the system administrator, the existing web camera have disadvantage in that they allows users only. who are connected to the server of the web camera, to see the image from it. In this paper, in order to make up for this defect, designed multi-vision interface showing multi images on single screen and, for the purpose of the improvement in efficiency, the functions of saving images and of scheduling the time to save the images.

  • PDF

Real-Time Algorithm for Relative Position Estimation Between Person and Robot Using a Monocular Camera (영상정보만을 이용한 사람과 로봇간 실시간 상대위치 추정 알고리즘)

  • Lee, Jung Uk;Sun, Ju Young;Won, Mooncheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1445-1452
    • /
    • 2013
  • In this paper, we propose a real-time algorithm for estimating the relative position of a person with respect to a robot (camera) using a monocular camera. The algorithm detects the head and shoulder regions of a person using HOG (Histogram of Oriented Gradient) feature vectors and an SVM (Support Vector Machine) classifier. The size and location of the detected area are used for calculating the relative distance and angle between the person and the camera on a robot. To increase the speed of the algorithm, we use a GPU and NVIDIA's CUDA library; the resulting algorithm speed is ~ 15 Hz. The accuracy of the algorithm is compared with the output of a SICK laser scanner.

A method of improving the quality of 3D images acquired from RGB-depth camera (깊이 영상 카메라로부터 획득된 3D 영상의 품질 향상 방법)

  • Park, Byung-Seo;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.5
    • /
    • pp.637-644
    • /
    • 2021
  • In general, in the fields of computer vision, robotics, and augmented reality, the importance of 3D space and 3D object detection and recognition technology has emerged. In particular, since it is possible to acquire RGB images and depth images in real time through an image sensor using Microsoft Kinect method, many changes have been made to object detection, tracking and recognition studies. In this paper, we propose a method to improve the quality of 3D reconstructed images by processing images acquired through a depth-based (RGB-Depth) camera on a multi-view camera system. In this paper, a method of removing noise outside an object by applying a mask acquired from a color image and a method of applying a combined filtering operation to obtain the difference in depth information between pixels inside the object is proposed. Through each experiment result, it was confirmed that the proposed method can effectively remove noise and improve the quality of 3D reconstructed image.

Quality Enhancement of 3D Volumetric Contents Based on 6DoF for 5G Telepresence Service

  • Byung-Seo Park;Woosuk Kim;Jin-Kyum Kim;Dong-Wook Kim;Young-Ho Seo
    • Journal of Web Engineering
    • /
    • v.21 no.3
    • /
    • pp.729-750
    • /
    • 2022
  • In general, the importance of 6DoF (degree of freedom) 3D (dimension) volumetric contents technology is emerging in 5G (generation) telepresence service, Web-based (WebGL) graphics, computer vision, robotics, and next-generation augmented reality. Since it is possible to acquire RGB images and depth images in real-time through depth sensors that use various depth acquisition methods such as time of flight (ToF) and lidar, many changes have been made in object detection, tracking, and recognition research. In this paper, we propose a method to improve the quality of 3D models for 5G telepresence by processing images acquired through depth and RGB cameras on a multi-view camera system. In this paper, the quality is improved in two major ways. The first concerns the shape of the 3D model. A method of removing noise outside the object by applying a mask obtained from a color image and a combined filtering operation to obtain the difference in depth information between pixels inside the object were proposed. Second, we propose an illumination compensation method for images acquired through a multi-view camera system for photo-realistic 3D model generation. It is assumed that the three-dimensional volumetric shooting is done indoors, and the location and intensity of illumination according to time are constant. Since the multi-view camera uses a total of 8 pairs and converges toward the center of space, the intensity and angle of light incident on each camera are different even if the illumination is constant. Therefore, all cameras take a color correction chart and use a color optimization function to obtain a color conversion matrix that defines the relationship between the eight acquired images. Using this, the image input from all cameras is corrected based on the color correction chart. It was confirmed that the quality of the 3D model could be improved by effectively removing noise due to the proposed method when acquiring images of a 3D volumetric object using eight cameras. It has been experimentally proven that the color difference between images is reduced.