• Title/Summary/Keyword: camera image

Search Result 4,917, Processing Time 0.036 seconds

Camera Calibration Using Neural Network with a Small Amount of Data (소수 데이터의 신경망 학습에 의한 카메라 보정)

  • Do, Yongtae
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.182-186
    • /
    • 2019
  • When a camera is employed for 3D sensing, accurate camera calibration is vital as it is a prerequisite for the subsequent steps of the sensing process. Camera calibration is usually performed by complex mathematical modeling and geometric analysis. On the other contrary, data learning using an artificial neural network can establish a transformation relation between the 3D space and the 2D camera image without explicit camera modeling. However, a neural network requires a large amount of accurate data for its learning. A significantly large amount of time and work using a precise system setup is needed to collect extensive data accurately in practice. In this study, we propose a two-step neural calibration method that is effective when only a small amount of learning data is available. In the first step, the camera projection transformation matrix is determined using the limited available data. In the second step, the transformation matrix is used for generating a large amount of synthetic data, and the neural network is trained using the generated data. Results of simulation study have shown that the proposed method as valid and effective.

Effects of selfie semantic network analysis and AR camera app use on appearance satisfaction and self-esteem (셀피의 의미연결망 분석과 AR 카메라 앱 사용이 외모만족도와 자아존중감에 미치는 영향)

  • Lee, Hyun-Jung
    • The Research Journal of the Costume Culture
    • /
    • v.30 no.5
    • /
    • pp.766-778
    • /
    • 2022
  • Image-oriented information is becoming increasingly important on social networking services (SNS); the background of this trend is the popularity of selfies. Currently, camera applications using augmented reality (AR) and artificial intelligence (AI) technologies are gaining traction. An AR camera app is a smartphone application that converts selfies into various interesting forms using filters. In this study, we investigated the change of keywords according to the time flow of selfies in Goolgle News articles through semantic network analysis. Additionally, we examined the effects of using an AR camera app on appearance satisfaction and self-esteem when taking a selfie. Semantic network analysis revealed that in 2013, postings of specific people were the most prominent selfie-related keywords. In 2019, keywords appeared regarding the launch of a new smartphone with a rear-facing camera for selfies; in 2020, keywords related to communication through selfies appeared. As a result of examining the effect of the degree of use of the AR camera app on appearance satisfaction, it was found that the higher the degree of use, the higher the user's interest in appearance. As a result of examining the effect of the degree of use of the AR camera app on self-esteem, it was found that the higher the degree of use, the higher the user's negative self-esteem.

Development of Guide Line Position Measurement System using a Camera for RTGC Tracking Control (RTGC 주행제어를 위한 카메라기반 가이드라인 위치계측시스템 개발)

  • Jeong, Ji-Hyun;Kawai, Hideki;Kim, Young-Bok;Jang, Ji-Sung;Bae, Heon-Meen
    • Journal of Power System Engineering
    • /
    • v.15 no.1
    • /
    • pp.72-77
    • /
    • 2011
  • The handling ability of containers at the terminal strongly depends on the performance of the cargo handling system such as RTGC(Rubber Tired Gantry Crane). This paper introduces a new guide line position measurement method using a camera for the RTGC which plays a important role in the harbor area. Because the line tracking is the basic technique for control system design of RTGC, it is necessary to develop a useful and reliable measurement system. If the displacement and angle of the RTGC relative to a guide line as trajectory to follow is obtained, the position of RTGC is calculated. Therefore, in this paper, a camera-based measurement system is introduced. The proposed measurement system is robust against light fluctuation and cracks of the guideline. This system consists of a camera and a PC which are installed at the lower side of the RTGC. Two edges of the guide line are detected from an input image taken by the camera, and these positions are determined in a Hough parameter space by using the Hough transformation method. From the experimental results, high accurate standard deviations were found as 0.98 pixel of the displacement and 0.24 degree of the angle, including robustness against lighting fluctuation and cracks of the guide line also.

Development of Skin Disease Smart Phone App. using CMOS Camera based on Hybrid RF (Hybrid RF기반 CMOS 카메라를 이용한 피부질환 모니터링 스마트폰 APP개발)

  • Lee, Minwoo;Park, Soonam;Lee, Nanhee;Lee, Junghoon;Lee, Jason;Shim, Dongha
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.2
    • /
    • pp.30-33
    • /
    • 2015
  • In this paper, we proceeded a study on the Hybrid RF based development of the smart phone Application skin disease monitoring using CMOS camera. we proposed an image transfer technology which can use the CMOS camera and we developed the smart phone application which can be possible to use a remote monitoring for skin disease. Image transfer technology using Hybrid RF communication applied for WiFi using CMOS camera. We implemented the function which can use a remote monitoring using Wi-Fi. These suggestion can be a good example for endoscopic applications using hybrid RF based smart phone application of skin disease monitoring using CMOS camera.

Human-Computer Interaction Based Only on Auditory and Visual Information

  • Sha, Hui;Agah, Arvin
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.285-297
    • /
    • 2000
  • One of the research objectives in the area of multimedia human-computer interaction is the application of artificial intelligence and robotics technologies to the development of computer interfaces. This involves utilizing many forms of media, integrating speed input, natural language, graphics, hand pointing gestures, and other methods for interactive dialogues. Although current human-computer communication methods include computer keyboards, mice, and other traditional devices, the two basic ways by which people communicate with each other are voice and gesture. This paper reports on research focusing on the development of an intelligent multimedia interface system modeled based on the manner in which people communicate. This work explores the interaction between humans and computers based only on the processing of speech(Work uttered by the person) and processing of images(hand pointing gestures). The purpose of the interface is to control a pan/tilt camera to point it to a location specified by the user through utterance of words and pointing of the hand, The systems utilizes another stationary camera to capture images of the users hand and a microphone to capture the users words. Upon processing of the images and sounds, the systems responds by pointing the camera. Initially, the interface uses hand pointing to locate the general position which user is referring to and then the interface uses voice command provided by user to fine-the location, and change the zooming of the camera, if requested. The image of the location is captured by the pan/tilt camera and sent to a color TV monitor to be displayed. This type of system has applications in tele-conferencing and other rmote operations, where the system must respond to users command, in a manner similar to how the user would communicate with another person. The advantage of this approach is the elimination of the traditional input devices that the user must utilize in order to control a pan/tillt camera, replacing them with more "natural" means of interaction. A number of experiments were performed to evaluate the interface system with respect to its accuracy, efficiency, reliability, and limitation.

  • PDF

Microsoft Kinect-based Indoor Building Information Model Acquisition (Kinect(RGB-Depth Camera)를 활용한 실내 공간 정보 모델(BIM) 획득)

  • Kim, Junhee;Yoo, Sae-Woung;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.4
    • /
    • pp.207-213
    • /
    • 2018
  • This paper investigates applicability of Microsoft $Kinect^{(R)}$, RGB-depth camera, to implement a 3D image and spatial information for sensing a target. The relationship between the image of the Kinect camera and the pixel coordinate system is formulated. The calibration of the camera provides the depth and RGB information of the target. The intrinsic parameters are calculated through a checker board experiment and focal length, principal point, and distortion coefficient are obtained. The extrinsic parameters regarding the relationship between the two Kinect cameras consist of rotational matrix and translational vector. The spatial images of 2D projection space are converted to a 3D images, resulting on spatial information on the basis of the depth and RGB information. The measurement is verified through comparison with the length and location of the 2D images of the target structure.

Design of PTZ Camera-Based Multiview Monitoring System for Efficient Observation in Vessel Engine Room (선박 기관실의 효율적인 감시를 위한 PTZ 카메라 기반의 멀티뷰 모니터링 시스템 설계)

  • Kim, Heon-Hui;Hong, Sang-Jun;Nam, Taek-Kun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1129-1136
    • /
    • 2021
  • A pan-tilt-zoom (PTZ) camera-based monitoring system for efficient monitoring in the engine room of a vessel was designed. A number of places exist where traditional analog instruments are still used in vessel engine rooms, and blind spots closely related to safety exist, for which flooding or fire is a concern. A camera-based monitoring system that guarantees a wide range at a relatively fast cycle for these monitoring points can be an effective alternative to enhance the safety of a vessel. Therefore, a multiview monitoring system is proposed in which the functions of the existing PTZ camera are further strengthened using a software. The monitoring system comprises four modules: camera control, location registration, traversal control, and multiview image reconstruction. The effectiveness of the method was evaluated through a series of experiments in an engine room environment.

Automatic Control of Horizontal-moving Stereoscopic Camera by Disparity Compensation

  • Kwon, Ki-Chul;Choi, Jae-Kwang;Kim, Nam;Young-Soo
    • Journal of the Optical Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.150-155
    • /
    • 2002
  • Horizontally-moving method (HMM) stereoscopic camera has a liner relationship between ver-gence and focus control. We introduced the automatic control method for a stereoscopic camera system that uses the relationship between vergence and focus of an HMM stereoscopic camera. the Automatic control method uses disparity compensation of the acquired image pair from the stereoscopic camera. For faster extraction of disparity information, the proposed binocular dispar-ity estimation method by the one-dimensional cepstral filter algorithm would be investigated. The suggested system in this study substantially reduced the controlling time and error-ratio so as to make it possible to achieve natural and clear images.

Motion Compensated Subband Video Coding with Arbitrarily Shaped Region Adaptivity

  • Kwon, Oh-Jin;Choi, Seok-Rim
    • ETRI Journal
    • /
    • v.23 no.4
    • /
    • pp.190-198
    • /
    • 2001
  • The performance of Motion Compensated Discrete Cosine Transform (MC-DCT) video coding is improved by using the region adaptive subband image coding [18]. On the assumption that the video is acquired from the camera on a moving platform and the distance between the camera and the scene is large enough, both the motion of camera and the motion of moving objects in a frame are compensated. For the compensation of camera motion, a feature matching algorithm is employed. Several feature points extracted using a Sobel operator are used to compensate the camera motion of translation, rotation, and zoom. The illumination change between frames is also compensated. Motion compensated frame differences are divided into three regions called stationary background, moving objects, and newly emerging areas each of which is arbitrarily shaped. Different quantizers are used for different regions. Compared to the conventional MC-DCT video coding using block matching algorithm, our video coding scheme shows about 1.0-dB improvements on average for the experimental video samples.

  • PDF

A development of the simple camera calibration system using the grid type frame with different line widths (다른 선폭들로 구성된 격자형 교정판을 이용한 간단한 카메라 교정 시스템의 개발)

  • 정준익;최성구;노도환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.371-374
    • /
    • 1997
  • Recently, the development of computer achieves a system which is similar to the mechanics of human visual system. The 3-dimensional measurement using monocular vision system must be achieved a camera calibration. So far, the camera calibration technique required reference target in a scene. But, these methods are inefficient because they have many calculation procedures and difficulties in analysis. Therefore, this paper proposes a native method that without reference target in a scene. We use the grid type frame with different line widths. This method uses vanishing point concept that possess a rotation parameter of the camera and perspective ration that perspect each line widths into a image. We confirmed accuracy of calibration parameter estimation through experiment on the algorithm with a grid paper with different line widths.

  • PDF