• Title/Summary/Keyword: camera image

Search Result 4,917, Processing Time 0.035 seconds

Development of Rotation Invariant Real-Time Multiple Face-Detection Engine (회전변화에 무관한 실시간 다중 얼굴 검출 엔진 개발)

  • Han, Dong-Il;Choi, Jong-Ho;Yoo, Seong-Joon;Oh, Se-Chang;Cho, Jae-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.116-128
    • /
    • 2011
  • In this paper, we propose the structure of a high-performance face-detection engine that responds well to facial rotating changes using rotation transformation which minimize the required memory usage compared to the previous face-detection engine. The validity of the proposed structure has been verified through the implementation of FPGA. For high performance face detection, the MCT (Modified Census Transform) method, which is robust against lighting change, was used. The Adaboost learning algorithm was used for creating optimized learning data. And the rotation transformation method was added to maintain effectiveness against face rotating changes. The proposed hardware structure was composed of Color Space Converter, Noise Filter, Memory Controller Interface, Image Rotator, Image Scaler, MCT(Modified Census Transform), Candidate Detector / Confidence Mapper, Position Resizer, Data Grouper, Overlay Processor / Color Overlay Processor. The face detection engine was tested using a Virtex5 LX330 FPGA board, a QVGA grade CMOS camera, and an LCD Display. It was verified that the engine demonstrated excellent performance in diverse real life environments and in a face detection standard database. As a result, a high performance real time face detection engine that can conduct real time processing at speeds of at least 60 frames per second, which is effective against lighting changes and face rotating changes and can detect 32 faces in diverse sizes simultaneously, was developed.

Intensity Compensation for Efficient Stereo Image Compression (효율적인 스테레오 영상 압축을 위한 밝기차 보상)

  • Jeon Youngtak;Jeon Byeungwoo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.2 s.302
    • /
    • pp.101-112
    • /
    • 2005
  • As we perceive the world as 3-dimensional through our two eyes, we can extract 3-dimensional information from stereo images obtained from two or more cameras. Since stereo images have a large amount of data, with recent advances in digital video coding technology, efficient compression algorithms have been developed for stereo images. In order to compress stereo images and to obtain 3-D information such as depth, we find disparity vectors by using disparity estimation algorithm generally utilizing pixel differences between stereo pairs. However, it is not unusual to have stereo images having different intensity values for several reasons, such as incorrect control of the iris of each camera, disagreement of the foci of two cameras, orientation, position, and different characteristics of CCD (charge-coupled device) cameras, and so on. The intensity differences of stereo pairs often cause undesirable problems such as incorrect disparity vectors and consequent low coding efficiency. By compensating intensity differences between left and right images, we can obtain higher coding efficiency and hopefully reduce the perceptual burden of brain to combine different information incoming from two eyes. We propose several methods of intensity compensation such as local intensity compensation, global intensity compensation, and hierarchical intensity compensation as very simple and efficient preprocessing tool. Experimental results show that the proposed algerian provides significant improvement in coding efficiency.

A study on vision system based on Generalized Hough Transform 2-D object recognition (Generalized Hough Transform을 이용한 이차원 물체인식 비젼 시스템 구현에 대한 연구)

  • Koo, Bon-Cheol;Park, Jin-Soo;Chien Sung-Il
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.1
    • /
    • pp.67-78
    • /
    • 1996
  • The purpose of this paper is object recognition even in the presence of occlusion by using generalized Hough transform(GHT). The GHT can be considered as a kind of model based object recognition algorithm and is executed in the following two stages. The first stage is to store the information of the model in the form of R-table (Reference table). The next stage is to identify the existence of the objects in the image by using the R-table. The improved GHT method is proposed for the practical vision system. First, in constructing the R-table, we extracted the partial arc from the portion of the whole object boundary, and this partial arc can be used for constructing the R-table. Also, clustering algorithm is employed for compensating an error arised by digitizing an object image. Second, an efficient method is introduced to avoid Ballard's use of 4-D array which is necessary for estimating position, orientation and scale change of an object. Only 2-D array is enough for recognizing an object. Especially, scale token method is introduced for calculating the scale change which is easily affected by camera zoom. The results of our test show that the improved hierarchical GHT method operates stably in the realistic vision situation, even in the case of object occlusion.

  • PDF

Eyelid Detection Algorithm Based on Parabolic Hough Transform for Iris Recognition (홍채 인식을 위한 포물 허프 변환 기반 눈꺼풀 영역 검출 알고리즘)

  • Jang, Young-Kyoon;Kang, Byung-Jun;Park, Kang-Ryoung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.1
    • /
    • pp.94-104
    • /
    • 2007
  • Iris recognition is biometric technology which uses a unique iris pattern of user in order to identify person. In the captured iris image by conventional iris recognition camera, it is often the case with eyelid occlusion, which covers iris information. The eyelids are unnecessary information that causes bad recognition performance, so this paper proposes robust algorithm in order to detect eyelid. This research has following three advantages compared to previous works. First, we remove the detected eyelash and specular reflection by linear interpolation method because they act as noise factors when locating eyelid. Second, we detect the candidate points of eyelid by using mask in limited eyelid searching area, which is determined by searching the cross position of eyelid and the outer boundary of iris. And our proposed algorithm detects eyelid by using parabolic hough transform based on the detected candidate points. Third, there have been many researches to detect eyelid, but they did not consider the rotation of eyelid in an iris image. Whereas, we consider the rotation factor in parabolic hough transform to overcome such problem. We tested our algorithm with CASIA Database. As the experimental results, the detection accuracy were 90.82% and 96.47% in case of detecting upper and lower eyelid, respectively.

Clinical Usefulness of 99mTc-DMSA Renal SPECT Using High Sensitivity-All Purpose Collimator for Pediatric Patients (고감도 범용성 콜리메이터를 이용한 소아 환자 99mTc-DMSA 신장 SPECT의 유용성)

  • Kim, Jin-Eui;Kim, Jung-Soo;Han, Jae-Bok;Choi, Nam-Gil
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.3
    • /
    • pp.219-231
    • /
    • 2016
  • $^{99m}Tc$-DMSA planar scan that can analyze the functions of kidney quantitatively provides less information on a lesion than tomography scanning. Therefore, this study applied a high sensitivity all-purpose collimator that is sensitive to photonic signals to $^{99m}Tc$-DMSA and carried out a clinical scan with single photon emission computed tomography (SPECT). And diagnostic accuracy and time requirement of were analyzed to know the clinical usefulness of the applied scanning method. 10 subjects were intravenously injected with radiopharmaceutical product (1.0-1.2 MBq/kg) and scanned by a gamma camera with planar scanner (high resolution (HR)-mode, $256{\times}256$, 50 kcts/view, 4 image) and SPECT (HR / high sensitive (HS)-mode, $128{\times}128$, step and shoot, $180^{\circ}$, variable sec/angle, total 64 frame, OSEM reconstruction), respectively. The collected data was compared with an analysis program. The results showed that HS-mode SPECT detected total counts 1.8-5.6 times more than planar scan. Relative renal function evaluated based on the counts was not significantly different by two scanning methods (p=0.96) and it turned out that test time was shortened by 39% when HS-mode SPECT was used. Therefore, SPECT using HR, HS-mode collimator could analyze renal function more quantitatively than using planar scan and the former could diagnose the location information of a lesion more accurately than the latter as well as shortened test time requirement, which demonstrated the clinical usefulness of $^{99m}Tc$-DMSA renal SPECT using high sensitivity all purpose collimator.

Characteristics of Flames Propagating Through Combustible Particles Concentration in a Vertical Duct (수직 배관 내의 농도변화에 따른 분진폭발 특성)

  • Han, Ou-Sup;Han, In-Soo;Choi, Yi-Rac;Lee, Jung-Suk;Lee, Su-Hee
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.41-46
    • /
    • 2011
  • We investigated experimentally the properties of dust explosion through lycopodium particle clouds in a duct to provide the fundamental knowledge. Propagating dust flames in the vertical duct of 120 cm height and 12 cm square cross-section were observed by digital video camera and flame front is visualized using by PIV(Particle Image Velocimetry) system. As the result, when the same average dust concentration existed in the vertical duct, downward flame propagation was faster than the upward flame propagation, its rate increased with dust concentration in 300g/$m^3$. Post flames were caused by the ignition of unburned particles which flowed into the rear region of flame from passage between flame and duct wall, and they generated regardless of duct condition. Also, it was found that appearance frequency of post flames during dust flame propagations increased with the increase of dust concentration.

Comparison of the fit of the coping pattern constructed by manual and CAD/CAM, depending on the margin of the abutment tooth (지대치 변연 형태에 따른 수작업과 CAD/CAM으로 제작한 coping 패턴의 적합도 비교)

  • Han, Min-soo;Kwon, Eun-Ja;Chio, Esther;Kim, Si-chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6611-6617
    • /
    • 2015
  • The purpose of this study is to compare the marginal and internal fit of metal and zirconia coping which is fabricated by manual and CAD/CAM(Computer Aided Design/Computer Aided Manufacturing). The model is prepared with Urethane material and two abutment teeth are fabricated with a knife and chamfer margin. Silicon replica technique is used to measure the marginal fit of manually fabricated and the CAD/CAM coping. Internal fitting level is measured with a microscope and the image is captured with a CCD camera. The distance between abutment teeth and coping is measured with a callibrated image analyzer software; marginal opening (MO), marginal gap (MG), internal gap (IG) at maximum curvature area, axial gap (AG), and occlusal gap (OG). Two-way ANOVA test is applied to compare fabrication technique and to analysis of abutment pattern. In addition, one-way ANOVA and Scheffe's test is used to analyze each parameter of the test. The result shows that the fit is < $120{\mu}m$ except OG of CAD/CAM and MO of knife margin. The CAD/CAM fabricated coping showed higher fit level at chamfer margin. However, knife margin showed better fitness compared to chamfer margin at MG. AG showed the minimum dimension with a constant result (< $38{\mu}m$).

Display of Irradiation Location of Ultrasonic Beauty Device Using AR Scheme (증강현실 기법을 이용한 초음파 미용기의 조사 위치 표시)

  • Kang, Moon-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.25-31
    • /
    • 2020
  • In this study, for the safe use of a portable ultrasonic skin-beauty device, an android app was developed to show the irradiation locations of focused ultrasound to a user through augmented reality (AR) and enable stable self-surgery. The utility of the app was assessed through testing. While the user is making a facial treatment with the beauty device, the user's face and the ultrasonic irradiation location on the face are detected in real-time with a smart-phone camera. The irradiation location is then indicated on the face image and shown to the user so that excessive ultrasound is not irradiated to the same area during treatment. To this end, ML-Kit is used to detect the user's face landmarks in real-time, and they are compared with a reference face model to estimate the pose of the face, such as rotation and movement. After mounting a LED on the ultrasonic irradiation part of the device and operating the LED during irradiation, the LED light was searched to find the position of the ultrasonic irradiation on the smart-phone screen, and the irradiation position was registered and displayed on the face image based on the estimated face pose. Each task performed in the app was implemented through the thread and the timer, and all tasks were executed within 75 ms. The test results showed that the time taken to register and display 120 ultrasound irradiation positions was less than 25ms, and the display accuracy was within 20mm when the face did not rotate significantly.

Development and Comparative Analysis of Mapping Quality Prediction Technology Using Orientation Parameters Processed in UAV Software (무인기 소프트웨어에서 처리된 표정요소를 이용한 도화품질 예측기술 개발 및 비교분석)

  • Lim, Pyung-Chae;Son, Jonghwan;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.895-905
    • /
    • 2019
  • Commercial Unmanned Aerial Vehicle (UAV) image processing software products currently used in the industry provides camera calibration information and block bundle adjustment accuracy. However, they provide mapping accuracy achievable out of input UAV images. In this paper, the quality of mapping is calculated by using orientation parameters from UAV image processing software. We apply the orientation parameters to the digital photogrammetric workstation (DPW) for verifying the reliability of the mapping quality calculated. The quality of mapping accuracy was defined as three types of accuracy: Y-parallax, relative model and absolute model accuracy. The Y-parallax is an accuracy capable of determining stereo viewing between stereo pairs. The Relative model accuracy is the relative bundle adjustment accuracy between stereo pairs on the model coordinates system. The absolute model accuracy is the bundle adjustment accuracy on the absolute coordinate system. For the experimental data, we used 723 images of GSD 5 cm obtained from the rotary wing UAV over an urban area and analyzed the accuracy of mapping quality. The quality of the relative model accuracy predicted by the proposed technique and the maximum error observed from the DPW showed precise results with less than 0.11 m. Similarly, the maximum error of the absolute model accuracy predicted by the proposed technique was less than 0.16 m.

Thermal Environment Evaluation of Wooden House Using Infra-red Thermal Image and Temperature Difference Ratio (TDR) (적외선열화상과 온도차비율법을 이용한 목조 주택의 열환경평가)

  • Chang, Yoon-Seong;Eom, Chang-Deuk;Park, Jun-Ho;Lee, Jun-Jae;Park, Joo-Saeng;Park, Moon-Jae;Yeo, Hwan-Myeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.518-525
    • /
    • 2010
  • Infrared (IR) thermography which is the technique for detecting invisible infrared light emitted by objects due to their surface thermal condition and for producing an image of the light has been applied in various field without damaging the objects. It also could be used indirectly to examine the inside of an object. In this study, insulation property of wooden house in Korea Forest Research Institute (KFRI) was evaluated with according to "Thermal performance of building - Quantitative detection of thermal irregularities in building envelopes - infrared method (KS F 2829)". This method uses "Temperature Difference Ratio (TDR)" between outdoor wall surface and indoor wall surface of wooden building for evaluating its thermal performance. The thermal performance of a room on the 2nd floor of the wooden house was focused in this study and IR thermography on the indoor and outdoor surface of the house was captured by IR camera. Heat loss from the corner and the window of the wooden house as well as wall of the house was quantitatively evaluated and the invisible heat loss in the wall was detected. It is expected that the results from this study could contribute to improve the wooden building energy efficiency.