• Title/Summary/Keyword: camera image

Search Result 4,918, Processing Time 0.037 seconds

The Use of Haar Cascade Result selection algorithm to check Wearing Masks and Fever Abnormality (Haar Cascade 결괏값 선별 알고리즘을 통한 마스크 착용 여부와 발열 체크)

  • Kim, Eui-Jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.193-198
    • /
    • 2022
  • Recently, place that you need to check wearing mask and body temperature to prevent the proliferation of COVID-19 increased. But these things often measured by man manually or by machine one by one, result may be different by measuring ways, so it wastes workforce. Also, the machine generally just measures the highest temperature of the face, criteria for fever can't be trusted too. A bottleneck may occur due to crowding of people at the entrance, and because most of the measurement sites are at one entrance, it is inconvenient to track the movement of COVID-19 Confirmed cases. Thus, in this study, we intend to propose a method for suppressing the spread of infection by automatically classifying and displaying in real time using camera, thermal camera, Haar Cascade, and result selection algorithm.

ShadowCam Instrument and Investigation Overview

  • Mark Southwick Robinson;Scott Michael Brylow;Michael Alan Caplinger;Lynn Marie Carter;Matthew John Clark;Brett Wilcox Denevi;Nicholas Michael Estes;David Carl Humm;Prasun Mahanti;Douglas Arden Peckham;Michael Andrew Ravine;Jacob Andrieu Schaffner;Emerson Jacob Speyerer;Robert Vernon Wagner
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.149-171
    • /
    • 2023
  • ShadowCam is a National Aeronautics and Space Administration Advanced Exploration Systems funded instrument hosted onboard the Korea Aerospace Research Institute (KARI) Korea Pathfinder Lunar Orbiter (KPLO) satellite. By collecting high-resolution images of permanently shadowed regions (PSRs), ShadowCam will provide critical information about the distribution and accessibility of water ice and other volatiles at spatial scales (1.7 m/pixel) required to mitigate risks and maximize the results of future exploration activities. The PSRs never see direct sunlight and are illuminated only by light reflected from nearby topographic highs. Since secondary illumination is very dim, ShadowCam was designed to be over 200 times more sensitive than previous imagers like the Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC). ShadowCam images thus allow for unprecedented views into the shadows, but saturate while imaging sunlit terrain.

GCP Placement Methods for Improving the Accuracy of Shoreline Extraction in Coastal Video Monitoring

  • Changyul Lee;Kideok Do;Inho Kim;Sungyeol Chang
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.174-186
    • /
    • 2024
  • In coastal video monitoring, the direct linear transform (DLT) method with ground control points (GCPs) is commonly used for geo-rectification. However, current practices often overlook the impact of GCP quantity, arrangement, and the geographical characteristics of beaches. To address this, we designed scenarios at Chuam Beach to evaluate how factors such as the distance from the camera to GCPs, the number of GCPs, and the height of each point affect the DLT method. Accuracy was assessed by calculating the root mean square error of the distance errors between the actual GCP coordinates and the image coordinates for each setting. This analysis aims to propose an optimal GCP placement method. Our results show that placing GCPs within 200 m of the camera ensures high accuracy with few points, whereas positioning them at strategic heights enhances shoreline extraction. However, since only fixed cameras were used in this study, factors like varying heights, orientations, and resolutions could not be considered. Based on data from a single location, we propose an optimal method for GCP placement that takes into account distance, number, and height using the DLT method.

Identification of Factors Affecting Errors of Velocity Calculation on Application of MLSPIV and Analysys of its Errors through Labortory Experiment (MLSPIV를 이용한 유속산정시 오차요인 규명 및 실내실험을 통한 유속산정오차 분석)

  • Kim, Young-Sung;Lee, Hyun-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.2
    • /
    • pp.153-165
    • /
    • 2010
  • Large-Scale Particle Image Velocimetry (LSPIV) is an extension of particle image velocimetry (PIV) for measurement of flows spanning large areas in laboratory or field conditions. LSPIV is composed of six elements - seeding, illumination, recording, image transformation, image processing, postprocessing - based on PIV. Possible error elements at each step of Mobile LSPIV (MLSPIV), which is a mobile version of LSPIV, in field applications are identified and summarized the effect of the errors which were quantified in the previous studies. The total number of elemental errors is 27, and five error sources were evaluated previously, seven elemental errors are not effective to the current MLSPIV system. Among 15 elemental errors, four errors - sampling time, image resolution, tracer, and wind - are investigated through an experiment at a laboratory to figure out how those errors affect to velocity calculation. The analysis to figure out the effect of the number of images used for image processing on the velocity calculation error shows that if over 50 images or more are used, the error due to it goes below 1 %. The effect of the image resolution on velocity calculation was investigated through various image resolution using digital camera. Low resolution image set made 3 % of velocity calculation error comparing with high resolution image set as a reference. For the effect of tracers and wind, the wind effect on tracer is decreasing remarkably with increasing the flume bulk velocity. To minimize the velocity evaluation error due to wind, tracers with high specific gravity is favorable.

An Image Processing System to Estimate Pollutant Concentration of Animal Wastes (가축 분뇨의 오염물질 농도 추정을 위한 영상처리 시스템)

  • 이대원;김현태
    • Journal of Animal Environmental Science
    • /
    • v.7 no.3
    • /
    • pp.177-182
    • /
    • 2001
  • This study was conducted to find out the coefficient relationships between intensity values image processing and pollution density of slurries. Slurry images were obtained from the image processing system using personnel computer and CCD-camera. Software, written in Visual $c^{++}$, combined the functions of the image capture, image processing and image analysis. The data of image processing for slurries were analyzed by the method of regression analysis. The results are as follows. 1. Red(R)-values among image processing data were obtained the highest correlation coefficient 0.9213 for detecting COD. Also, green(G)-value were obtained the highest correlation coefficient 0.9019 fur detecting BOD. Blue(B)-value could not find significant values to detect the pollution resources density. 2. Hue(H)-values among image processing data were obtained the highest correlation coefficient 0.9466 for detecting BOD. This fact could be used in detecting BOD 3. Green(G)-value, GRAY-value, Hue(H)-value, Saturation(5)-value and Intensity(I)-value were the correlation coefficient more than 0.8 for BOD. Hue(H)-value was higher correlation coefficient than any other value. It was possible to detect pollution density of slurries by using the image processing system. 4. Red(R)-value, GRAY-value and Saturation(5)-value were obtained the correlation coefficient more than 0.8 for detecting COD. a-value had the highest correlation coefficient Among these values. It was possible to detect density indirectly by using the image processing system. 5. SS-density were obtained the correlation coefficient less than 0.8 by using the image processing system. The density of $NH_4$-N and $NO_3$-N were obtained correlation coefficient less than 0.2.

  • PDF

Automated scrap-sorting research using a line-scan camera system (라인스캔 카메라 시스템을 이용(利用)한 스크랩 자동선별(自動選別) 연구(硏究))

  • Kim, Chan-Wook;Kim, Hang-Goo
    • Resources Recycling
    • /
    • v.17 no.6
    • /
    • pp.43-49
    • /
    • 2008
  • In this study, a scrap sorting system using a color recognition method has been developed to automatically sort out specified materials from a mixture, and its application as been examined in the separation of Cu and other non-ferrous metal parts from a mixture of iron scraps. The system is composed of three parts; measuring, conveying and ejecting parts. The color of scrap surface is recognized by the measuring part consisting of a line-scan camera, light sources and a frame grabber. The recognition is program-controlled by a image processing algorithms, and thus only the scrap part of designated color is separated by the use of air nozzles. In addition, the light system is designed to meet a high speed of sorting process with a frequency-variable inverter and the air nozzled ejectors are to be operated by an I/O interface communication with a hardware controller. In the functional tests of the system, its efficiency in the recognition of Cu scraps from its mixture with Fe ones reaches to more than 90%, and that in the separation more than 80% at a conveying speed of 25 m/min. Therefore, it is expected that the system can be commercialized in the industry of shredder makers if a high efficiency ejecting system is realized.

A Map-Based Boundray Input Method for Video Surveillance (영상 감시를 위한 지도기반 감시영역 입력 방법)

  • Kim, Jae-Hyeok;Maeng, Seung-Ryol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.418-424
    • /
    • 2014
  • In this paper, we propose a boundary input method for video surveillance systems. Since intrusion of a moving object is decided by comparition of its position and the surveillance boundary, the boundary input method is a basic function in video surveillance. Previous methods are difficult to adapt to the change of surveillance environments such as the size of surveillance area, the number of cameras, and the position of cameras because those build up the surveillance boundary using the captured image in the center of each camera. In our approach, the whole surveillance boundary is once defined in the form of polygon based on the satellite map and transformed into each camera environment. Its characteristics is that the boundary input is independent from the surveillance environment. Given the position of a moving object, the time complexity of its intrusion detection shows O(n), where n is the number of polygon vertices. To verify our method, we implemented a 3D simulation and assured that the input boundary can be reused in each camera without any redefinition.

Utilization of Coordinate-Based Image for Efficient Management of Road Facilities (효율적인 도로시설물 관리를 위한 좌표기반 영상의 활용)

  • Lee, Je-Jung;Kim, Min-Gyu;Park, Jun-Kyu;Yun, Hee-Cheon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.4
    • /
    • pp.13-21
    • /
    • 2011
  • Update of road facilities database such as road sign, traffic lights, and street lights is interesting business in a local government. Recently, existing road facilities database, aerial photo and topographic map are referred for the installation and complement of road facilities. But it is difficult to comprehend road facilities' condition and additional expenses may appear in field survey. Therefore, it is necessary to establish and update road facility DB and many studies has been carried out to efficiently collect road related spatial data. In this study, the establishment of various complicated road facility DB was conducted by images that had been obtained by digital camera with a built-in bluetooth and DGPS. Results showed that road facility DB was constructed effectively and suggested the possibility of road facility management using images based on coordinate through accuracy analyses using total-station surveying. And using digital camera and DGPS is expected to effective real-time update and management of road facility DB.

A Study on Efficient Positioning of Subtitles in 360 VR (360 VR 영상에서 효율적인 자막 위치 선정에 관한 연구)

  • Kim, Hyeong-Gyun
    • Journal of Digital Convergence
    • /
    • v.18 no.6
    • /
    • pp.93-98
    • /
    • 2020
  • In this paper, we proposed a technique in which subtitles are followed according to changes in the user's viewpoint in 360 VR. Create a Sphere object in Unity's Scene and insert a 360-degree image on the surface of the Sphere object. At this time, the ReverseNormals script is used to convert the viewpoint to the inside. The SightOrbitproved script is used to modify the camera view. Use this script to set the environment in which subtitles can move depending on the viewpoint. Next, add the 3D text (subtitle) that the user wants to the lower layer of the main camera and build a 360 VR object. The 3D text subtitles implemented through this study were compared according to the change of the user's viewpoint. As a result, as the viewpoint changes, normal subtitles flow out of line of sight according to the user's point of view, but 3D Text subtitles move according to the user's point of view, and it can be seen that the user can always view the subtitles.

Location Estimation Method of Steam Leak in Pipelines Using Leakage Area Analysis (누설영역 분석을 이용한 배관 증기누설 위치 추정 방법)

  • Kim, Se-Oh;Jeon, Hyeong-Seop;Son, Ki-Sung;Park, Jong Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.384-390
    • /
    • 2016
  • It is important to have a pipeline leak-detection system that determines the presence of a leak and quickly identifies its location. Current leak detection methods use a acoustic emission sensors, microphone arrays, and camera images. Recently, many researchers have been focusing on using cameras for detecting leaks. The advantage of this method is that it can survey a wide area and monitor a pipeline over a long distance. However, conventional methods using camera monitoring are unable to target an exact leak location. In this paper, we propose a method of detecting leak locations using leak-detection results combined with multi-frame analysis. The proposed method is verified by experiment.