• Title/Summary/Keyword: camber

Search Result 234, Processing Time 0.026 seconds

Deformation Behavior of Slab by Two-Step Sizing Press in a Hot Strip Mill (열간 압연에서 2단 사이징 프레스 금형에 의한 슬래브의 변형거동 예측)

  • Lee S. H.;Kim D. H.;Byon S. M.;Park H. D.;Kim B. M.
    • Transactions of Materials Processing
    • /
    • v.14 no.9 s.81
    • /
    • pp.791-797
    • /
    • 2005
  • Extensive width reduction of slabs is an important technology for achieving continuous production between the steelmaking and hot rolling processes. However, the vertical horizontal rolling process has many disadvantages, e.g., large width deviations and less efficient width reduction. This study was carried out to investigate the deformation of slab by sizing press with two steps die. To do it, dog-bone and camber are discussed in width sizing process considering the deformation behavior according to the deviation of anvil velocity and the deviation of initial slab temperature. In this paper, the various causes of the sizing press phenomena are mentioned for the purpose of understanding of rolling conditions. As a result, the optimal anvil shape having a minimum-forming load is obtained by FE-simulation and ANN.

High-Efficiency Design of Axial Flow Fan through Shape Optimization of Airfoil (익형의 형상최적화를 통한 고효율 축류송풍기 설계)

  • Lee, Ki-Sang;Kim, Kwang-Yong;Choi, Jae-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.2
    • /
    • pp.46-54
    • /
    • 2008
  • This study presents a numerical optimization to optimize an axial flow fan blade to increase the efficiency. The radial basis neural network is used as an optimization method with the numerical analysis by Reynolds-averaged Navier-Stokes equations using SST model as turbulence closure. Four design variables related to airfoil maximum camber, maximum camber location, leading edge radius and trailing edge radius, respectively, are selected, and efficiency is considered as objective function which is to be maximized. Thirty designs are evaluated to get the objective function values of each design used to train the neural network. Optimum shape shows the efficiency increased by 1.0%.

Multi-axial Stress Analysis and Experimental Validation to Estimate of the Durability Performance of the Automotive Wheel (자동차용 휠의 내구성능 예측을 위한 복합축 응력해석 및 실험적 검증)

  • Jung, Sung-Pil;Chung, Won-Sun;Park, Tae-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.875-882
    • /
    • 2011
  • In this paper, the finite element analysis model of the mult-axial wheel durability test configuration is created using SAMCEF. Mooney-Rivlin 2nd model is applied to the tire model, and the variation of the air pressure inside the tire is considered. Vertical load, lateral load and camber angle are applied to the simulation model. The tire rotates because of the friction contact with a drum, and reaches its maximum speed of 60 km/h. The dynamics stress results of the simulation and experiment are compared, and the reliability of the simulation model is verified.

Aerodynamic Performance of Gurney Flap (Gurney 플?의 공기역학적 성능)

  • Yoo, Neung-Soo;Jung, Sung-Woong
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.335-341
    • /
    • 1998
  • A numerical investigation was performed to determine the effect of a Gurney flap on a NACA 23012 airfoil. A Navier-Stokes code, RAMPANT, was used to calculate the flow field about airfoil. The fully turbulent results were obtained using the standard $k-{\varepsilon}$ two-equation turbulence model. To provide a check case for our computational method, computations were performed for NACA 4412 airfoil which compared with Wedcock's experimental data. Gurney flap sizes of 0.5, 1.0, 1.5, and 2% of the airfoil chord were studied. The numerical solutions showed the Gurney flap increased both lift and drag. These results suggested that the Gurney flap served to increased the effective camber of the airfoil. But Gurney flap provided a significant increase in lift-to-drag ratio relatively at low angle of attack and for high lift coefficient. Also, it turned out that 0.5% chord size of flap was best one among them.

  • PDF

서로 다른 두께 비를 가진 Eppler 387익형에서의 공력특성에 관한 연구

  • Choe, Won-Gyu
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.632-637
    • /
    • 2016
  • This study shows what difference would be made to the aerodynamic characteristic with different thickness ratio of the same airfoil, Eppler 387, at low Reynolds number, at the angle of attack of $0^{\circ}$. Konkuk Univ.'s airfoil has a bigger thickness ratio than that of the original Eppler 387 airfoil. The reason for the thicker camber is a Pt 100 ohm heater mounted inside the Konkuk Univ.'s airfoil and this was assumed to make some differences to aerodynamic characteristic. The comparison of these two airfoils' CFD data, provided by EDSION_CFD, with real experiment that had been made in subsonic wind tunnel at Konkuk Univ. is done. A finer result would come out if the complement of the homogeneity of the wind tunnel's fluid is done in the future.

  • PDF