• Title/Summary/Keyword: calmodulin-binding protein

Search Result 52, Processing Time 0.02 seconds

Generation and characterization of calmodulin-DHFR sandwich fusion protein

  • Han, Chang Hoon
    • Korean Journal of Veterinary Research
    • /
    • v.48 no.3
    • /
    • pp.243-250
    • /
    • 2008
  • A calmodulin-dihydrofolate reductase (DHFR) sandwich fusion protein was generated by insertion of calmodulin into the $\beta$-bulge region of DHFR to observe the effects of structurally constraining the calmodulin structure. The calcium binding properties of the sandwich protein were almost identical to calmodulin. Similar to calmodulin ($10.7 {\mu}M$), the sandwich protein bound four equivalents of calcium, with half saturation ($K_{0.5}$) observed at a [$Ca^{2+}$] of $8{\mu}M$. However, nicotinamide adenine dinucleotide (NAD) kinase activation property of the sandwich protein was lower than that of calmodulin. The sandwich protein activated NAD kinase, but to only half of the level obtained with calmodulin. The K 0.5 for both calmodulin and the sandwich protein were approximately the same (1-2 nM). Methylation analyses of the sandwich protein show that insertion of calmodulin into DHFR results in a large decrease in methylation. The $V_{max}$ observed with the sandwich protein (95 nmole/min/ml) was only 22% of the value observed with calmodulin (436 nmol/min/ml) in the presence of calcium. Addition of trimethoprim to the reaction significantly inhibited the observed methylation rate. Overall, the data suggest that the insertion of calmodulin into the DHFR structure has little effect on calcium binding by the individual lobes of calmodulin, but may constrain the lobes in a manner that results in altered interaction with the calmodulin-dependent proteins, and severely perturbed the methyltransferase recognition site.

Structural Organization of Calmodulin Gene and Expression in Transgenic

  • 최영주
    • Journal of Life Science
    • /
    • v.4 no.2
    • /
    • pp.50-59
    • /
    • 1994
  • 신호전달과정의 연구는 calcium이 messenger로서 작용한다고 밝혀진 후로 식물에서 $Ca^{++}$ -messenger system에 대한 생화학적 및 분자생물학적 분야에서의 연구는 급속하게 발전하게 되었다. 식물세포에서 calcium 이온들의 많은 작용은 EF hand family로서 알려진 calcium binding protein에 의해서 조절된다. Calmodulin (CaM)은 highy conserve 되어 있으며, 4개의 calcium binding domain을 가진 ubiquitous한 단백질이다. 본 연구는 calmodulin 유전자의 발현에 미치는 calcium, EGTA, calcium ionophore 및 calmodulin antagonist의 영향과 또한 외부신호(light, wounding), chemical 및 auxin 등의 영향을 reporter화 유전자의 분석에 의해서 CaM유전자의 발현기작을 규명하고자 하였고, 또한 calmodulin 유전자의 organ-specific 발현 및 calmodulin의 새로운 생리적인 기능도 연구하고자 하였다.

  • PDF

Binding of Sanjoinine-A (Frangufoline) to Calmodulin

  • Han, Yong-Nam;Kim, Geum-Yi;Hwang, Keum-Hee;Han, Byung-Hoon
    • Archives of Pharmacal Research
    • /
    • v.16 no.4
    • /
    • pp.289-294
    • /
    • 1993
  • A binding protein of radio-labeled sanjoinine-A (fangufoline) in rat brain cytoplasm was investigated, using an equilibrium dialysis technique. The labeled agent was bound to the cytosol fraction with two distinctly different types of sets in calclum ion-dependent manner. The bound protein was identified as calmodulin by dgel filtration of the sanjoinine-A bound cytosol fraction on a Sephadex G-75 column. Calmodulin was bound to sanjoinine-A bound at two sets of binding sites in the calculated as two at high affinity sites $(Kd=1.1\;mu{M)}$ and four at low affinity sites $(Kd=3.1\;\mu{M)}$.

  • PDF

Interaction of a Kinesin Superfamily Protein 1A (KIF1A) with Calmodulin

  • Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.12 no.2
    • /
    • pp.43-46
    • /
    • 2002
  • Kinesin Superfamily Protein 1A (KIF1A) is an anterograde monomeric motor transporting a subset of synaptic vesicle precursors and plays an important role in neuronal function and survival. Here, f have used the yeast two-hybrid system to identify the proteins that interacts with the tail region of KIF1A. Calmodulin was found to interact specifically with the tail region of KIF1A. Calmodulin regulates many diverse cellular functions by modulating the activity of the proteins that interact with it. KIF1A interacts with calmodulin in the yeast two-hybrid assay, which is proved by immunoprecipitation with calmodulin in brain fraction. These results indicate that KIF1A is associated with calmodulin, suggesting that calmodulin may be a key role in the regulation of anterograde transport of synaptic 1 vesicle precursors.

  • PDF

Changes in the levels of $Ca^{2+}$/calmodulin - binding proteins and glutamate decarboxylase during the growth of tobacco suspension cells (담배 배양 세포의 성장과정 중 칼슘/칼모듈린-결합단백질 및 glutamate decarboxylase의 생성변화)

  • Han, Kwang-Soo;Oh, Suk-Heung
    • Applied Biological Chemistry
    • /
    • v.43 no.4
    • /
    • pp.231-235
    • /
    • 2000
  • The changes of calmodulin levels, calmodulin-binding proteins, and $Ca^{2+}$/calmodulin-dependent glutamate decarboxylase during the growth of tobacco suspension cells were investigated. Tobacco cells exhibited a typical growth curve, including an exponential growth phase between 3 and 5 days after inoculation, and an apparent stationary phase occurring after 5 day. Although slight changes were observed from sample to sample, calmodulin protein levels remained similar during the phases of culture growth. Several $Ca^{2+}-dependent$ calmodulin-binding proteins including 56, 46, 36, and 32-kDa proteins were detected in tobacco cell extracts. The 56-kDa protein was identified as glutamate decarboxylase by Western-blot analysis using an anti-GAD monoclonal antibody. The levels of GAD protein and the specific activity of GAD enzyme were highest during the middle exponential phase of the culture growth cycle. These data suggest that $Ca^{2+}$/calmodulin-dependent glutamate decarboxylase is modulated during the growth of tobacco suspension cells.

  • PDF

Isolation and Characterization of a Novel Calcium/Calmodulin-Dependent Protein Kinase, AtCK, from Arabidopsis

  • Jeong, Jae Cheol;Shin, Dongjin;Lee, Jiyoung;Kang, Chang Ho;Baek, Dongwon;Cho, Moo Je;Kim, Min Chul;Yun, Dae-Jin
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.276-282
    • /
    • 2007
  • Protein phosphorylation is one of the major mechanisms by which eukaryotic cells transduce extracellular signals into intracellular responses. Calcium/calmodulin ($Ca^{2+}/CaM$)-dependent protein phosphorylation has been implicated in various cellular processes, yet little is known about $Ca^{2+}/CaM$-dependent protein kinases (CaMKs) in plants. From an Arabidopsis expression library screen using a horseradish peroxidase-conjugated soybean calmodulin isoform (SCaM-1) as a probe, we isolated a full-length cDNA clone that encodes AtCK (Arabidopsis thaliana calcium/calmodulin-dependent protein kinase). The predicted structure of AtCK contains a serine/threonine protein kinase catalytic domain followed by a putative calmodulin-binding domain and a putative $Ca^{2+}$-binding domain. Recombinant AtCK was expressed in E. coli and bound to calmodulin in a $Ca^{2+}$-dependent manner. The ability of CaM to bind to AtCK was confirmed by gel mobility shift and competition assays. AtCK exhibited its highest levels of autophosphorylation in the presence of 3 mM $Mn^{2+}$. The phosphorylation of myelin basic protein (MBP) by AtCK was enhanced when AtCK was under the control of calcium-bound CaM, as previously observed for other $Ca^{2+}/CaM$-dependent protein kinases. In contrast to maize and tobacco CCaMKs (calcium and $Ca^{2+}/CaM$-dependent protein kinase), increasing the concentration of calmodulin to more than $3{\mu}M$ suppressed the phosphorylation activity of AtCK. Taken together our results indicate that AtCK is a novel Arabidopsis $Ca^{2+}/CaM$-dependent protein kinase which is presumably involved in CaM-mediated signaling.

Purification and Properties of Novel Calcium-binding Proteins from Streptomyces coelicolor

  • Chang, Ji-Hun;Yoon, Soon-Sang;Lhee, Sang-Moon;Park, I-Ha;Jung, Do-Young;Park, Young-Sik;Yim, Jeong-Bin
    • Journal of Microbiology
    • /
    • v.37 no.1
    • /
    • pp.21-26
    • /
    • 1999
  • Two novel calcium-binding proteins, named CAB-I and CAB-II, have been isolated from Streptomyces coelicolor. Purification of the calcium-binding proteins involved heat treatment, fractionation with ammonium sulfate, acid treatment, anion exchange and hydrophobic interaction column chromatography, FPLC gel filtration, and preparative isoelectric focusing. A chelex competitive assay and 45Ca autoradiography verified the calcium-binding ability of the proteins. The major band CAB-II has an apparent molecular weight of 26,000 determined by SDS-polyacrylamide gel electrophoresis and 340,000 determined by gel filtration. The isoelectric point of this molecule showed the acidic nature of the molecule. N-terminal amino acid sequence analysis shows homology to rat Ca2+/calmodulin-dependent protein kinase-II (CAB-II) and yeast phosphoprotein phosphatase (CAB-I).

  • PDF

Calcium Signaling-mediated and Differential Induction of Calmodulin Gene Expression by Stress in Oryza sativa L.

  • Phean-o-pas, Srivilai;Punteeranurak, Pornpimon;Buaboocha, Teerapong
    • BMB Reports
    • /
    • v.38 no.4
    • /
    • pp.432-439
    • /
    • 2005
  • $Ca^{2+}$/calmodulin transduction pathways have been implicated in mediating stress response and tolerance in plants. Here, three genes encoding calmodulin (Cam) members of the EF-hand family of $Ca^{2+}$-binding proteins were identified from Oryza sativa L. databases. Complementary DNA for each of the calmodulin genes, OsCam1, OsCam2, and OsCam3 were sequenced. OsCam1 and OsCam2 encode a conventional 148-amino acid calmodulin protein that contains four characteristic $Ca^{2+}$-binding motifs. OsCam3 encode a similar protein with a 38-amino-acid extension containing a putative prenylation site (CVIL) at the carboxyl terminus. RT-PCR showed that each of the genes is expressed in leaves and roots of 2-week old rice seedlings. By RNA gel blot analysis, OsCam1 mRNA levels strongly increased in response to NaCl, mannitol and wounding treatments. In contrast, OsCam2 mRNA levels were relatively unchanged under all conditions investigated. NaCl treatment and wounding also increased the OsCam3 mRNA level, but in a more transient manner. Our results indicate that although the expression of genes encoding different calmodulin isoforms is ubiquitous, they are differentially regulated by various stress signals. In addition, we have demonstrated that the calcium-channel blocker lanthanum chloride inhibited the induction of OsCam1 gene expression by both NaCl and mannitol treatments. These results suggest that osmotic stress induced expression of OsCam1 gene requires the $[Ca^{2+}]_{cyt}$ elevation that is known to occur in response to these stimuli.

THE AFFINITY OF CALMODULIN-AFFIGEL FOR INOSITOL TRIPHOSPHATE KINASE FROM BOVINE BRAIN (소의 뇌 Inositol triphosphate kinase와 Calmodulin-Affigel과의 친화도)

  • Lim, Sung-Woo;Kim, Jung-Hye
    • Journal of Yeungnam Medical Science
    • /
    • v.7 no.1
    • /
    • pp.39-50
    • /
    • 1990
  • The one event on signalling mechanism is the cleavage by adenyl cyclase of ATP into second messenger, cyclic AMP. The other transfer system of inositol metabolism. it is widely recognized that hydrolysis of the minor membrane lipid phosphoinositide bisphosphate($PIP_2$) initiated by occupation of certain receptors and catalyzed by phospholipase C, lead to toe generation of the two intracellular messengers, inositol triphosphate($IP_3$) and diacylglycerol(DG). $IP_3$ is converted to inositol tetrakisphosphate($IP_4$) by $IP_3$ kinase. In the present study, it is that purification of calmodulin is used by phenyl-Sepharose CL-4B chromatography. it's molecular weigh, 17.000 in SDS-polyacrylamide gel electrophoresis. In order to observe the affinity between calmodulin (CaM)-Affigel 15 and $IP_3$ kinase, and isolated $IP_3$ kinase, was applied in CaM-Affigel with $Ca^{2+}$ equilibirum buffer and EGTA equilibirum buffer. We compared with binding and elution effect of $IP_3$ kinase in several condition of buffer. In affinity of binding. $Ca^{2+}$ equilibrium buffer was in the most proper condition. and elution, CaM/$Ca^{2+}$ buffer(CE1 10.36, CE2 12. 76pM/min/mg of protein) was effected much more than EGTA buffer(E2 1.48, E3 2.43pM/min/mg of protein), but CaM/$Ca^{2+}$ stimulate the activity of $IP_3$ kinase. And then, several detergents such as sodium deoxycholate, tween 20. cholic acid, polyethylene glycol, chaps were applied. The 0.2% chaps buffer(E2 23.19, E3 8.05pM/min/mg of protein) was the most effective in elution of $IP_3$ kinase.

  • PDF

Isolation and Characterization of Calmodulin 2 (CICAM2) Gene from Codonopsis lanceolata

  • Lee, Kang;In, Jun-Gyo;Yu, Chang-Yeon;Min, Byung-Hoon;Chung, Ill-Min;Kim, Se-Young;Kim, Yeong-Chae;Yang, Deok-Chun
    • Plant Resources
    • /
    • v.7 no.3
    • /
    • pp.174-180
    • /
    • 2004
  • Calmodulin, a $Ca^{2+}$-binding protein, has no enzyme activity. It combines with $Ca^{2+}$ and makes variable proteins to an active form. Calmodulin 2 is a ubiquitous protein in plants. To investigate the defense mechanism against various stresses, a clone encoding a calmodulin 2 protein was isolated from a cDNA library prepared from taproot mRNAs of Codonopsis lanceolata. The cDNA, designated CICAM2, is 719 nucleotides long and has an open reading frame of 450 bp with a deduced amino acid sequence of 149 residues. The deduced amino acid sequence of CICAM2 showed a high similarity with calmodulins of P. x hybrida (P27163) 97%, N. tabacum (BAB61908) 97%, S. tuberosum (AAA74405) 96%, Z. mays (CAA74307) 92%, C. richardii (AF510075) 93%, M. truncatula (AAM81203) 91%, and G. max (P62163) 91%. The transcriptional expression of the CICAM2 gene, was gradually increased by the CaCl$_2$ treatment. Whereas its expression And it was gradually decreased in the cold stress treatment.ent.

  • PDF