• 제목/요약/키워드: calmodulin 2

검색결과 196건 처리시간 0.036초

Role of $Ca^{2+}$ in the Stimulation of Glucose Transport by Insulin in Adipocytes

  • Chang, Sung-Hoe;Jang, Yeon-Jin;Park, Kun-Koo;Kim, Ghi-Su;Ryu, Hee-Jeong;Park, Chun-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권3호
    • /
    • pp.357-364
    • /
    • 1999
  • We investigated the role of $Ca^{2+}$ and protein kinases/phosphatases in the stimulatory effect of insulin on glucose transport. In isolated rat adipocytes, the simple omission of $CaCl_2$ from the incubation medium significantly reduced, but did not abolish, insulin-stimulated 2-deoxy glucose (2-DG) uptake. Pre-loading adipocytes with intracellular $Ca^{2+}$ chelator, 5,5'-dimethyl bis (o-aminophenoxy)ethane-N,N,N'N' tetraacetic acetoxymethyl ester (5,5'-dimethyl BAPTA/AM) completely blocked the stimulation. Insulin raised intracellular $Ca^{2+}$ concentration $([Ca^{2+}]_i)$ about 1.7 times the basal level of $72{\pm}5$ nM, and 5,5'-dimethyl BAPTA/AM kept it constant at the basal level. This correlation between insulin-induced increases in 2-DG uptake and $[Ca^{2+}]_i$ indicates that the elevation of $[Ca^{2+}]_i$ may be prerequisite for the stimulation of glucose transport. Studies with inhibitors (ML-9, KN-62, cyclosporin A) of $Ca^{2+}-calmodulin$ dependent protein kinases/phosphatases also indicate an involvement of intracellular $Ca^{2+}.$ Additional studies with okadaic acid and calyculin A, protein phosphatase-1 (PP-1) and 2A (PP-2A) inhibitors, indicate an involvement of PP-1 in insulin action on 2-DG uptake. These results indicate an involvement of $Ca^{2+}-dependent$ signaling pathway in insulin action on glucose transport.

  • PDF

Regulation of the Contraction Induced by Emptying of Intracellular $Ca^{2+}$ Stores in Cat Gastric Smooth Muscle

  • Baek, Hye-Jung;Sim, Sang-Soo;Rhie, Duck-Joo;Yoon, Shin-Hee;Hahn, Sang-June;Jo, Yang-Hyeok;Kim, Myung-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권2호
    • /
    • pp.113-120
    • /
    • 2000
  • To investigate the mechanism of smooth muscle contraction induced by emptying of intracellular $Ca^{2+}$ stores, we measured isometric contraction and $^{45}Ca^{2+}$ influx. $CaCl_2$ increased $Ca^{2+}$ store emptying- induced contraction in dose-dependent manner, but phospholipase C activity was not affected by the $Ca^{2+}$ store emptying-induced contraction. The contraction was inhibited by voltage-dependent $Ca^{2+}$ channel antagonists dose dependently, but not by TMB-8 (intracellular $Ca^{2+}$ release blocker). Both PKC inhibitors (H-7 and staurosporine) and tyrosine kinase inhibitors (genistein and methyl 2,5-dihydroxycinnamic acid) significantly inhibited the contraction, but calmodulin antagonists (W-7 and trifluoperazine) had no inhibitory effect on the contraction. The combined inhibitory effects of protein kinase inhibitors, H-7 and genistein, together with verapamil were greater than that of each one alone. In $Ca^{2+}$ store-emptied condition, $^{45}Ca^{2+}$ influx was significantly inhibited by verapamil, H-7 or genistein but not by trifluoperazine. However combined inhibitory effects of protein kinase inhibitors, H-7 and genistein, together with verapamil were not observed. Therefore, this kinase pathway may modulate the sensitivity of contractile protein. These results suggest that contraction induced by emptying of intracellular $Ca^{2+}$ stores was mediated by influx of extracellular $Ca^{2+}$ through voltage-dependent $Ca^{2+}$ channel, also protein kinase C and/or tyrosine kinase pathway modulates the $Ca^{2+}$ sensitivity of contractile protein.

  • PDF

A Single Natural Variation Determines Cytosolic Ca2+-Mediated Hyperthermosensitivity of TRPA1s from Rattlesnakes and Boas

  • Du, Eun Jo;Kang, KyeongJin
    • Molecules and Cells
    • /
    • 제43권6호
    • /
    • pp.572-580
    • /
    • 2020
  • Transient receptor potential ankyrin 1 from rattlesnakes (rsTRPA1) and boas (bTRPA1) was previously proposed to underlie thermo-sensitive infrared sensing based on transcript enrichment in infrared-sensing neurons and hyper-thermosensitivity expressed in Xenopus oocytes. It is unknown how these TRPA1s show thermosensitivities that overwhelm other thermoreceptors, and why rsTRPA1 is more thermosensitive than bTRPA1. Here, we show that snake TRPA1s differentially require Ca2+ for hyper-thermosensitivity and that predisposition to cytosolic Ca2+ potentiation correlates with superior thermosensitivity. Extracellularly applied Ca2+ upshifted the temperature coefficients (Q10s) of both TRPA1s, for which rsTRPA1, but not bTRPA1, requires cytosolic Ca2+. Intracellular Ca2+ chelation and substitutive mutations of the conserved cytosolic Ca2+-binding domain lowered rsTRPA1 thermosensitivity comparable to that of bTRPA1. Thapsigargin-evoked Ca2+ or calmodulin little affected rsTRPA1 activity or thermosensitivity, implying the importance of precise spatiotemporal action of Ca2+. Remarkably, a single rattlesnake-mimicking substitution in the conserved but presumably dormant cytosolic Ca2+-binding domain of bTRPA1 substantially enhanced thermosensitivity through cytosolic Ca2+ like rsTRPA1, indicating the capability of this single site in the determination of both cytosolic Ca2+ dependence and thermosensitivity. Collectively, these data suggest that Ca2+ is essential for the hyper-thermosensitivity of these TRPA1s, and cytosolic potentiation by permeating Ca2+ may contribute to the natural variation of infrared senses between rattlesnakes and boas.

Antiarrhythmic effects of ginsenoside Rg2 on calcium chloride-induced arrhythmias without oral toxicity

  • Gou, Dongxia;Pei, Xuejing;Wang, Jiao;Wang, Yue;Hu, Chenxing;Song, Chengcheng;Cui, Sisi;Zhou, Yifa
    • Journal of Ginseng Research
    • /
    • 제44권5호
    • /
    • pp.717-724
    • /
    • 2020
  • Background: Malignant arrhythmias require drug therapy. However, most of the currently available antiarrhythmic drugs have significant side effects. Ginsenoside Rg2 exhibits excellent cardioprotective effects and appears to be a promising candidate for cardiovascular drug development. So far, the oral toxicity and antiarrhythmic effects of Rg2 have not been evaluated. Methods: Acute oral toxicity of Rg2 was assessed by the Limit Test method in mice. Subchronic oral toxicity was determined by repeated dose 28-day toxicity study in rats. Antiarrhythmic activities of Rg2 were evaluated in calcium chloride-induced arrhythmic rats. Antiarrhythmic mechanism of Rg2 was investigated in arrhythmic rats and H9c2 cardiomyocytes. Results: The results of toxicity studies indicated that Rg2 exhibited no single-dose (10 g/kg) acute oral toxicity. And 28-day repeated dose treatment with Rg2 (1.75, 3.5 and 5 g/kg/d) demonstrated minimal, if any, subchronic toxicity. Serum biochemical examination showed that total cholesterol in the high-dose cohort was dramatically decreased, whereas prothrombin time was increased at Day 28, suggesting that Rg2 might regulate lipid metabolism and have a potential anticoagulant effect. Moreover, pretreatment with Rg2 showed antiarrhythmic effects on the rat model of calcium chloride induced arrhythmia, in terms of the reduced duration time, mortality, and incidence of malignant arrhythmias. The antiarrhythmic mechanism of Rg2 might be the inhibition of calcium influx through L-type calcium channels by suppressing the phosphorylation of Ca2+/calmodulin-dependent protein kinase II. Conclusion: Our findings support the development of Rg2 as a promising antiarrhythmic drug with fewer side effects for clinical use.

Activation of G Proteins by Aluminum Fluoride Enhances RANKL-Mediated Osteoclastogenesis

  • Park, Boryung;Yang, Yu-Mi;Choi, Byung-Jai;Kim, Min Seuk;Shin, Dong Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권5호
    • /
    • pp.427-433
    • /
    • 2013
  • Receptor activator of NF-${\kappa}B$ ligand (RANKL)-induced osteoclastogenesis is accompanied by intracellular $Ca^{2+}$ mobilization in a form of oscillations, which plays essential roles by activating sequentially $Ca^{2+}$/calmodulin-dependent protein kinase, calcineurin and NFATc1, necessary in the osteoclast differentiation. However, it is not known whether $Ca^{2+}$ mobilization which is evoked in RANKL-independent way induces to differentiate into osteoclasts. In present study, we investigated $Ca^{2+}$ mobilization induced by aluminum fluoride ($AlF_4^-$), a G-protein activator, with or without RANKL and the effects of $AlF_4^-$ on the osteoclastogenesis in primary cultured mouse bone marrow-derived macrophages (BMMs). We show here that $AlF_4^-$ induces intracellular $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) oscillations, which is dependent on extracellular $Ca^{2+}$ influx. Notably, co-stimulation of $AlF_4^-$ with RANKL resulted in enhanced NFATc1 expression and formation of tartrate-resistant acid phosphatase (TRAP) positive multinucleated cells. Additionally, we confirmed that mitogen-activated protein kinase (MAPK) is also activated by $AlF_4^-$. Taken together, these results demonstrate that G-protein would be a novel modulator responsible for $[Ca^{2+}]_i$ oscillations and MAPK activation which lead to enhancement of RANKL-mediated osteoclastogenesis.

L6 근육세포에서 포도당 수송능에 미치는 $CdCl_2$의 영향 (Effects of Cadmium on Glucose Transport in L6 Myocytes)

  • 강동희;길이룡;박광식;이병훈;문창규
    • Environmental Analysis Health and Toxicology
    • /
    • 제20권1호
    • /
    • pp.75-85
    • /
    • 2005
  • This study was aimed to know the effect of cadmium chloride (CdCl₂) on glucose transport in L6 myotube and its action mechanism. CdCl₂ increased the 2-deoxy- (l-3H)-D-glucose (2-DOG) uptake 1.9 and 2.4 fold at 10 and 25 μM respectively. To investigate the stimulating-mechanism of glucose transport induced by CdCl₂, the wortmannin and PD98059 were used as PI3K (phosphatidylinositol 3-kinase) inhibitor and MAPK inhibitor respectively, which did not affect 2-DOG uptake. This fact suggests that CdCl₂ induced 2-DOG uptake may not be concerned to the insulin signalling pathway. Whereas nifedipine, a calcium channel blocker, and trifluoperazine, a calmodulin inhibitor, were found to inhibit the 2-DOG uptake stimulted by CdCl₂. In addition, we also measured the ROS (reactive oxygen species) production and GSH level in L6 myotube to investigate the correlation between the glucose uptake and ROS. CdCl₂(25 μM) increased ROS generation approximately 1.5 fold and changed the cellular GSH level, but GSSG/GSH ratio remained unchanged. CdCl₂ stimulated 2-DOG uptake and ROS generation were inhibited by N-acetylcystein. And BSO pretreatment, a potent inhibitor of γ-GCS, resulted in the dramatic decrease of 2-DOG uptake and also the increase of the sensitivity to cadmium cytotoxicity. The obtained results suggest that CdCl₂-stimulated glucose uptake might be based on the activation of HMP shunt as an antioxidant defense mechanism of the cells.

Ardipusilloside-I stimulates gastrointestinal motility and phosphorylation of smooth muscle myosin by myosin light chain kinase

  • Xu, Zhili;Liang, Hanye;Zhang, Mingbo;Tao, Xiaojun;Dou, Deqiang;Hu, Liping;Kang, Tingguo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권6호
    • /
    • pp.609-616
    • /
    • 2017
  • Ardipusilloside-I is a natural triterpenoid saponin, which was isolated from Ardisia pusilla A. DC. The aim of the study was to evaluate the stimulation of ardipusilloside-I on gastrointestinal motility in vitro and in vivo. The experiment of smooth muscle contraction directly monitored the contractions of the isolated jejunal segment (IJS) in different contractile states, and the effects of ardipusilloside-I on myosin were measured in the presence of $Ca^{2+}$-calmodulin using the activities of 20 kDa myosin light chain ($MLC_{20}$) phosphorylation and myosin $Mg^{2+}$-ATPase. The effects of ardipusilloside-I on gastro emptying and intestinal transit in constipation-predominant rats were observed, and the MLCK expression in jejuna of constipated rats was determined by western blot. The results showed that, ardipusilloside-I increased the contractility of IJS in a dose-dependent manner and reversed the low contractile state (LCS) of IJS induced by low $Ca^{2+}$, adrenaline, and atropine respectively. There were synergistic effects on contractivity of IJS between ardipusilloside-I and ACh, high $Ca^{2+}$, and histamine, respectively. Ardipusilloside-I could stimulate the phosphorylation of $MLC_{20}$ and $Mg^{2+}$-ATPase activities of $Ca^{2+}$- dependent phosphorylated myosin. Ardipusilloside-I also stimulated the gastric emptying and intestinal transit in normal and constipated rats in vivo, respectively, and increased the MLCK expression in the jejuna of constipation-predominant rats. Briefly, the findings demonstrated that ardipusilloside-I could effectively excite gastrointestinal motility in vitro and in vivo.

The Memory-Enhancing Effects of Liquiritigenin by Activation of NMDA Receptors and the CREB Signaling Pathway in Mice

  • Ko, Yong-Hyun;Kwon, Seung-Hwan;Hwang, Ji-Young;Kim, Kyung-In;Seo, Jee-Yeon;Nguyen, Thi-Lien;Lee, Seok-Yong;Kim, Hyoung-Chun;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • 제26권2호
    • /
    • pp.109-114
    • /
    • 2018
  • Liquiritigenin (LQ) is a flavonoid that can be isolated from Glycyrrhiza radix. It is frequently used as a tranditional oriental medicine herbal treatment for swelling and injury and for detoxification. However, the effects of LQ on cognitive function have not been fully explored. In this study, we evaluated the memory-enhancing effects of LQ and the underlying mechanisms with a focus on the N-methyl-D-aspartic acid receptor (NMDAR) in mice. Learning and memory ability were evaluated with the Y-maze and passive avoidance tests following administration of LQ. In addition, the expression of NMDAR subunits 1, 2A, and 2B; postsynaptic density-95 (PSD-95); phosphorylation of $Ca^{2+}$/calmodulin-dependent protein kinase II (CaMKII); phosphorylation of extracellular signal-regulated kinase 1/2 (ERK 1/2); and phosphorylation of cAMP response element binding (CREB) proteins were examined by Western blot. In vivo, we found that treatment with LQ significantly improved memory performance in both behavioral tests. In vitro, LQ significantly increased NMDARs in the hippocampus. Furthermore, LQ significantly increased PSD-95 expression as well as CaMKII, ERK, and CREB phosphorylation in the hippocampus. Taken together, our results suggest that LQ has cognition enhancing activities and that these effects are mediated, in part, by activation of the NMDAR and CREB signaling pathways.

Development of transgenic disease-resistance root stock for growth of watermelon.(oral)

  • S.M. Cho;Kim, J.Y.;J.E. Jung;S.J. Mun;S.J. Jung;Kim, K.S.;Kim, Y.C.;B.H. Cho
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.65.2-65
    • /
    • 2003
  • To protect the plant against several soil-borne pathogens, we are currently constructing disease-resistant transgenic root stock for the growth of cucurbitaceae vegetable plants, watermelon and gourd. We made a watermelon cDNA library from Cladosporium cucumerinum-Infected leaves for substractive hybriazation and differential screening. We isolated the several pathogen inducible cDNA clones, such as caffeoyl-CoA-methyltransferase, LAA induced protein, receptor-like kinase homolog, hydroxyproline-rich glycoprotein, catalase, calmodulin binding protein, mitochondrial ATPase beta subunit, methyl tRNA synthetase and WRKY transcription factors. We previously obtained CaMADS in pepper and galactinol synthase ( CsGolS) in cucumber that were confirmed to be related with disease-resistance. CaMADS and CsGolS2 were transformed into the inbred line 'GO701-2' gourd, the inbred line '6-2-2' watermelon and the Kong-dye watermelon by Agrobacterium tumerfaciens LBA4404. Plant growth regulators (zeatin, BAP and IAA) were used for shoot regeneration and root induction for optimal condition. Putative transgenic plants were selected in medium containing 100mg/L kanamycin and integration of the CaMADS and CsGO/S2 into the genomic DNA were demonstrated by the PCR analysis. We isolated major soil-borne pathogens, such as Monosporascus cannonballus, Didymella bryoniae, Cladosporium cuvumerinum from the cultivation area of watermelon or root stock, and successfully established artificial inoculation method for each pathogen. This work was supported by a grant from BioGreen 21 program, Rural Development Administration, Republic of Korea.

  • PDF

백서의 실험적 치아이동시 Nitric Oxide Synthetase의 발현 양상 (THE EXPRESSION OF NITRIC OXIDE SYNTHETASE IN THE EXPERIMENTAL TOOTH MOVEMENT IN RATS)

  • 박동권;김상철
    • 대한치과교정학회지
    • /
    • 제31권1호
    • /
    • pp.107-120
    • /
    • 2001
  • 반응 질소 중간 대사물 중의 하나인 nitric oride(NO)는 작고 불안정하며 전하가 없는 free radical이며 신체의 여러 종류 세포에서 분비되어 대부분의 조직 세포에 영향을 미친다. 또한 NO는 lipopolysacchatide나 cytokines 등의 자극으로 골모세로로부터 생산되어 파골세포의 활성을 강력하제 억제한다는 보고도 있다. 이러한 NO는 L-arguinine으로부터 nitric oxide synthetase(NOS)에 의해 합성된다. 골개조에 의해 이루어지는 생체 내 치아이동 및 그에 따른 치주조직 변화에서 NO 및 NOS가 중요한 역할을 할 것으로 생각되나 교정적 치아이동에서 치주인대의 재생 과정과 관련되어 이들의 역할이 밝혀진 것이 드물었다. 본 연구에서는 견인력에 의한 치아이동시 시간 경과에 따른 NOS의 발현 정도 및 분포 변화를 알아보고자, Sprague-Dawley계 백서 27마리를 대조군(3마리)과 실험군(24마리)으로 나누었으며, 실험군은 견인력(75g)을 가한 후 12시간, 1일, 4일, 7일, 14일, 28일이 경과한 후 각각 4마리씩 희생시켜, $NOS_3$$NOS_2$의 발현 정도 및 분포를 면역조직화학적으로 관찰한 바 다음과 같은 결과를 얻었다. 1. 대조군의 $NOS_3$ 발현은 치은과 상아질, 치주인대, 치조골에서 경미 하였지만 치수, 악간 봉합에서는 약양성의 발현을 보였으며, $NOS_2$의 경우와 유사하였다. 2. 실험군의 상아질, 치은, 백악질, 백악모세포, 상아모세포에서의 $NOS_3$$NOS_2$의 발현은 견인력 적용 기간에 관계없이 대조군과 큰 차이가 없이 경미하거나 약양성이었다. 3. 치주인대에서의 $NOS_3$의 발현은 실험 4일째부터 치근단에서 증가되어 7일째에 압박측을 중심으로 증가한 이후 감소되었다. 4. 치조골에서의 $NOS_3$는 실험 7일째까지 경미한 발현을 보이다가 14일째부터 28일째까지 약양성으로 발현 증가를 보였으며 압박 및 견인측 간의 차이는 없었다. 5. 치주인대에서의 $NOS_2$는 압박측과 견인측 간의 차이 없이 실험 7일째 이후에 대조군보다 증가된 약양성의 발현을 보였으며 $NOS_3$의 발현에 비해 상대적으로 많았다. 6. 치조골에서의 $NOS_2$의 발현은 14일째에 가장 크게 증가하여 골모세포, 파골세포, 골세포 모두에서 발현되었으며 압박측보다 견인측 치조골의 골세포에서 약간 많았다.

  • PDF