DOI QR코드

DOI QR Code

A Single Natural Variation Determines Cytosolic Ca2+-Mediated Hyperthermosensitivity of TRPA1s from Rattlesnakes and Boas

  • Du, Eun Jo (Department of Anatomy and Cell Biology and Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Kang, KyeongJin (Department of Anatomy and Cell Biology and Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine)
  • Received : 2020.02.02
  • Accepted : 2020.05.11
  • Published : 2020.06.30

Abstract

Transient receptor potential ankyrin 1 from rattlesnakes (rsTRPA1) and boas (bTRPA1) was previously proposed to underlie thermo-sensitive infrared sensing based on transcript enrichment in infrared-sensing neurons and hyper-thermosensitivity expressed in Xenopus oocytes. It is unknown how these TRPA1s show thermosensitivities that overwhelm other thermoreceptors, and why rsTRPA1 is more thermosensitive than bTRPA1. Here, we show that snake TRPA1s differentially require Ca2+ for hyper-thermosensitivity and that predisposition to cytosolic Ca2+ potentiation correlates with superior thermosensitivity. Extracellularly applied Ca2+ upshifted the temperature coefficients (Q10s) of both TRPA1s, for which rsTRPA1, but not bTRPA1, requires cytosolic Ca2+. Intracellular Ca2+ chelation and substitutive mutations of the conserved cytosolic Ca2+-binding domain lowered rsTRPA1 thermosensitivity comparable to that of bTRPA1. Thapsigargin-evoked Ca2+ or calmodulin little affected rsTRPA1 activity or thermosensitivity, implying the importance of precise spatiotemporal action of Ca2+. Remarkably, a single rattlesnake-mimicking substitution in the conserved but presumably dormant cytosolic Ca2+-binding domain of bTRPA1 substantially enhanced thermosensitivity through cytosolic Ca2+ like rsTRPA1, indicating the capability of this single site in the determination of both cytosolic Ca2+ dependence and thermosensitivity. Collectively, these data suggest that Ca2+ is essential for the hyper-thermosensitivity of these TRPA1s, and cytosolic potentiation by permeating Ca2+ may contribute to the natural variation of infrared senses between rattlesnakes and boas.

Keywords

References

  1. Andersson, D.A., Gentry, C., Moss, S., and Bevan, S. (2008). Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J. Neurosci. 28, 2485-2494. https://doi.org/10.1523/JNEUROSCI.5369-07.2008
  2. Bakken, G.S. and Krochmal, A.R. (2007). The imaging properties and sensitivity of the facial pits of pitvipers as determined by optical and heattransfer analysis. J. Exp. Biol. 210 (Pt 16), 2801-2810. https://doi.org/10.1242/jeb.006965
  3. Bullock, T.H. and Fox, W. (1957). The anatomy of the infra-red sense organ in the facial pit of pit vipers. J. Cell Sci. 98, 219-234. https://doi.org/10.1242/jcs.s3-98.42.219
  4. Campbell, A.L., Naik, R.R., Sowards, L., and Stone, M.O. (2002). Biological infrared imaging and sensing. Micron 33, 211-225. https://doi.org/10.1016/S0968-4328(01)00010-5
  5. Chang, A., Abderemane-Ali, F., Hura, G.L., Rossen, N.D., Gate, R.E., and Minor, D.L., Jr. (2018). A calmodulin C-lobe Ca2+-dependent switch governs Kv7 channel function. Neuron 97, 836-852.e6. https://doi.org/10.1016/j.neuron.2018.01.035
  6. Chuang, H.H., Neuhausser, W.M., and Julius, D. (2004). The supercooling agent icilin reveals a mechanism of coincidence detection by a temperature-sensitive TRP channel. Neuron 43, 859-869. https://doi.org/10.1016/j.neuron.2004.08.038
  7. Clapham, D.E. and Miller, C. (2011). A thermodynamic framework for understanding temperature sensing by transient receptor potential (TRP) channels. Proc. Natl. Acad. Sci. U. S. A. 108, 19492-19497. https://doi.org/10.1073/pnas.1117485108
  8. Cordero-Morales, J.F., Gracheva, E.O., and Julius, D. (2011). Cytoplasmic ankyrin repeats of transient receptor potential A1 (TRPA1) dictate sensitivity to thermal and chemical stimuli. Proc. Natl. Acad. Sci. U. S. A. 108, E1184-E1191. https://doi.org/10.1073/pnas.1114124108
  9. de Cock Buning, T. (1983). Thresholds of infrared sensitive tectal neurons in Python reticulatus, Boa constrictor and Agkistrodon rhodostoma. J. Comp. Physiol. 151, 461-467. https://doi.org/10.1007/BF00605462
  10. Du, E.J., Ahn, T.J., Kwon, I., Lee, J.H., Park, J.H., Park, S.H., Kang, T.M., Cho, H., Kim, T.J., Kim, H.W., et al. (2016a). TrpA1 regulates defecation of foodborne pathogens under the control of the Duox pathway. PLoS Genet. 12, e1005773. https://doi.org/10.1371/journal.pgen.1005773
  11. Du, E.J., Ahn, T.J., Sung, H., Jo, H., Kim, H.W., Kim, S.T., and Kang, K. (2019). Analysis of phototoxin taste closely correlates nucleophilicity to type 1 phototoxicity. Proc. Natl. Acad. Sci. U. S. A. 116, 12013-12018.
  12. Du, E.J., Ahn, T.J., Wen, X., Seo, D.W., Na, D.L., Kwon, J.Y., Choi, M., Kim, H.W., Cho, H., and Kang, K. (2016b). Nucleophile sensitivity of Drosophila TRPA1 underlies light-induced feeding deterrence. Elife 5, e18425. https://doi.org/10.7554/eLife.18425
  13. Gracheva, E.O., Ingolia, N.T., Kelly, Y.M., Cordero-Morales, J.F., Hollopeter, G., Chesler, A.T., Sánchez, E.E., Perez, J.C., Weissman, J.S., and Julius, D. (2010). Molecular basis of infrared detection by snakes. Nature 464, 1006-1011. https://doi.org/10.1038/nature08943
  14. Guinamard, R., Simard, C., and Del Negro, C. (2013). Flufenamic acid as an ion channel modulator. Pharmacol. Ther. 138, 272-284. https://doi.org/10.1016/j.pharmthera.2013.01.012
  15. Hamada, F.N., Rosenzweig, M., Kang, K., Pulver, S.R., Ghezzi, A., Jegla, T.J., and Garrity, P.A. (2008). An internal thermal sensor controlling temperature preference in Drosophila. Nature 454, 217-220. https://doi.org/10.1038/nature07001
  16. Hasan, R., Leeson-Payne, A.T., Jaggar, J.H., and Zhang, X. (2017). Calmodulin is responsible for Ca2+-dependent regulation of TRPA1 channels. Sci. Rep. 7, 45098. https://doi.org/10.1038/srep45098
  17. Hasan, R., and Zhang, X. (2018). Ca2+ regulation of TRP ion channels. Int. J. Mol. Sci. 19, E1256. https://doi.org/10.3390/ijms19041256
  18. Kang, K. (2016a). Exceptionally high thermal sensitivity of rattlesnake TRPA1 correlates with peak current amplitude. Biochim. Biophys. Acta 1858, 318-325. https://doi.org/10.1016/j.bbamem.2015.12.011
  19. Kang, K. (2016b). Thermal sensitivity analysis data utilizing Q10 scanning, Boltzmann slope factor and the change of molar heat capacity. Data Brief 6, 732-737. https://doi.org/10.1016/j.dib.2016.01.025
  20. Kang, K., Panzano, V.C., Chang, E.C., Ni, L., Dainis, A.M., Jenkins, A.M., Regna, K., Muskavitch, M.A., and Garrity, P.A. (2012). Modulation of TRPA1 thermal sensitivity enables sensory discrimination in Drosophila. Nature 481, 76-80. https://doi.org/10.1038/nature10715
  21. Kang, K., Pulver, S.R., Panzano, V.C., Chang, E.C., Griffith, L.C., Theobald, D.L., and Garrity, P.A. (2010). Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception. Nature 464, 597-600. https://doi.org/10.1038/nature08848
  22. Kang, K.J., Kinjo, T.G., Szerencsei, R.T., and Schnetkamp, P.P. (2005a). Residues contributing to the Ca2+ and K+ binding pocket of the NCKX2 Na+/Ca2+-K+ exchanger. J. Biol. Chem. 280, 6823-6833. https://doi.org/10.1074/jbc.M407933200
  23. Kang, K.J., Shibukawa, Y., Szerencsei, R.T., and Schnetkamp, P.P. (2005b). Substitution of a single residue, Asp575, renders the NCKX2 K+- dependent Na+/Ca2+ exchanger independent of K+. J. Biol. Chem. 280, 6834-6839. https://doi.org/10.1074/jbc.M412933200
  24. Liu, B., Hui, K., and Qin, F. (2003). Thermodynamics of heat activation of single capsaicin ion channels VR1. Biophys. J. 85, 2988-3006. https://doi.org/10.1016/S0006-3495(03)74719-5
  25. Noble, G.K. and Schmidt, A. (1937). The structure and function of the facial and labial pits of snakes. Proc. Am. Philos. Soc. 77, 263-288.
  26. Oh, S.J., Hwang, S.J., Jung, J., Yu, K., Kim, J., Choi, J.Y., Hartzell, H.C., Roh, E.J., and Lee, C.J. (2013). MONNA, a potent and selective blocker for transmembrane protein with unknown function 16/anoctamin-1. Mol. Pharmacol. 84, 726-735. https://doi.org/10.1124/mol.113.087502
  27. Oh, S.J., Park, J.H., Han, S., Lee, J.K., Roh, E.J., and Lee, C.J. (2008). Development of selective blockers for Ca2+-activated Cl channel using Xenopus laevis oocytes with an improved drug screening strategy. Mol. Brain 1, 14. https://doi.org/10.1186/1756-6606-1-14
  28. Wang, H., Schupp, M., Zurborg, S., and Heppenstall, P.A. (2013). Residues in the pore region of Drosophila transient receptor potential A1 dictate sensitivity to thermal stimuli. J. Physiol. 591, 185-201. https://doi.org/10.1113/jphysiol.2012.242842
  29. Wang, Y.Y., Chang, R.B., Waters, H.N., McKemy, D.D., and Liman, E.R. (2008). The nociceptor ion channel TRPA1 is potentiated and inactivated by permeating calcium ions. J. Biol. Chem. 283, 32691-32703. https://doi.org/10.1074/jbc.M803568200
  30. Warren, J.W. and Proske, U. (1968). Infrared receptors in the facial pits of the Australian python Morelia spilotes. Science 159, 439-441. https://doi.org/10.1126/science.159.3813.439
  31. You, Y., Pelzer, D.J., and Pelzer, S. (1997). Modulation of L-type Ca2+ current by fast and slow Ca2+ buffering in guinea pig ventricular cardiomyocytes. Biophys. J. 72, 175-187. https://doi.org/10.1016/S0006-3495(97)78656-9
  32. Zurborg, S., Yurgionas, B., Jira, J.A., Caspani, O., and Heppenstall, P.A. (2007). Direct activation of the ion channel TRPA1 by Ca2+. Nat. Neurosci. 10, 277-279. https://doi.org/10.1038/nn1843