• Title/Summary/Keyword: calibration matching

Search Result 135, Processing Time 0.023 seconds

Design DDR3 ZQ Calibration having improved impedance matching (향상된 impedance matching을 갖는 DDR3 ZQ Calibration 설계)

  • Choi, Jae-Woong;Park, Kyung-Soo;Chai, Myoung-Jun;Kim, Ji-Woong;Kwack, Kae-Dal
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.579-580
    • /
    • 2008
  • DRAM설계시 DDR2에서부터 고속 동작으로 인해 반송파에 의한 신호외곡으로 impedance matching의 필요성이 대두되었다. 이로 인해 제안된 방법은 외부 Termination 저항(RZQ)을 기준으로 impedance matching을 위한 Rtt 저항의 생성이다.[1] 제안된 ZQ Calibration 회로는 기존의conventional ZQ Calibration 회로에 After ZQ calibration block을 추가하여 한 번 더 교정함으로써 마지막 PMOS Array와 NMOS Array 저항 값이 Termination 저항 값에 가깝도록 설계하였다. 따라 전력효율은 그대로 유지하면서 ${\Delta}VM$의 오차범위를 기존의 ${\pm}5%$이내에서 skew 조건에 따라 ${\pm}1.33%$까지 향상시키는 것을 볼 수 있다. (JEDEC spec. ${\pm}5%$이내).

  • PDF

The Image Measuring System for accurate calibration-matching in objects (정밀 켈리브레이션 정합을 위한 화상측징계)

  • Kim, Jong-Man
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.357-358
    • /
    • 2006
  • Accurate calibration matching for maladjusted stereo cameras with calibrated pixel distance parameter is presented. The camera calibration is a necessary procedure for stereo vision-based depth computation. Intra and extra parameters should be obtain to determine the relation between image and world coordination through experiment. One difficulty is in camera alignment for parallel installation: placing two CCD arrays in a plane. No effective methods for such alignment have been presented before. Some amount of depth error caused from such non-parallel installation of cameras is inevitable. If the pixel distance parameter which is one of Intra parameter is calibrated with known points, such error can be compensated in some amount and showed the variable experiments for accurate effects.

  • PDF

Wiggle Matching for Radiocarbon Dating Korean Artifacts with Biannual Samples

  • Park, Won-Kyu;Nam, Tae-Kwang;Park, Jung-Hun;Hong, Wan
    • Journal of the Korea Furniture Society
    • /
    • v.20 no.6
    • /
    • pp.605-611
    • /
    • 2009
  • This paper reports the application of radiocarbon wiggle matching for Korean wooden artifacts such as furniture and Buddhist statues for precise dating. Ten biannual samples of 20 years (AD 1249-1268) for AMS (accelerator mass spectrometry) radiocarbon measurements were prepared from a board of the pedestal for Buddhist statue at Jeongsusa (temple) in Kangwhado, Korea, which was dendrochronologically dated. The average 95.4% confidence interval of radiocarbon dating without wiggle matching was 123 year. When wiggle matching technique was applied, it became 37 year, 3.3 times smaller than that without wiggle matching. The results indicated that wiggle matching technique using the calibration curve for northern hemisphere (IntCal04: International radiocarbon calibration curve announced in 2004) can produce precise dates for Korean wooden artifacts which possess as much as 20 tree rings.

  • PDF

A study on scanner calibration method using nonlinear regression analysis in sub-divided color space (분할된 색공간에서 비선형 다중회귀분석법을 이용한 스캐너 켈리브레이션에 관한 연구)

  • 김나나;구철회
    • Proceedings of the Korean Printing Society Conference
    • /
    • 2000.12a
    • /
    • pp.0.2-0
    • /
    • 2000
  • Most important step for the color matching in scanner is the color coordinate transformation from the scanner RGB space to device independent uniform color space. A variety of color calibration technologies have been developed for input device. Linear or nonlinear matrices have been conveniently applied to correct the color filter\`s mismatch with color matching function in scanners. The color matching accuracy is expected to be further improved when the nonlinear matrices are optimized into subdivided smaller color spaces than in single matrix of the entire color space. This article proposed the scanner calibration method using subspace division regression analysis and it were compared with conventional method.

  • PDF

Measurement of Strain of Sheet Metal (화상처리기법을 이용한 판재의 변형률 측정(I))

  • 황창원;김낙수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.207-212
    • /
    • 1997
  • In estimating the formability of sheet metal, the stereo vision system contributes the accuracy of strain of sheet metal, the convenience in measuring the strain of sheet metal, and the handiness in preparing the forming limit diagram by calculating the 3D values and strain of sheet metal. The algorithm has been developed so that the 3D-coordinate values of sheet metal could be calculated by image processing which is composed of camera calibration, and the stereo matching of images in two viewpoints. By comparing with experiments, the possibility and the convenience of algorithm has been verified, which could calculate the 3D-coordinate values of sheet metal automatically by using the preprocessing of the original image of sheet metal, which had the noise before adjusting the camera calibration and the stereo matching algorithm.

  • PDF

A study on scanner calibration method using nonlinear regression analysis in sub-divided color space (분활된 색공간에서 비선형 다중회귀 분석법을 이용한 스캐너 캘리브레이션에 관한 연구)

  • 김나나;구철희
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.19 no.1
    • /
    • pp.4-16
    • /
    • 2001
  • Most important step for the color matching in scanner is the color coordinate transformation from the scanner RGB space to device independent uniform color space. A variety of color calibration technologies have been developed for input device. Linear or nonlinear matrices have been conveniently applied to correct the color filter's mismatch with color matching function in scanners. The color matching accuracy is expected to be further improved when the nonlinear matrices are optimized into subdivided smaller color spaces than in single matrix of the entire color space. This article proposed the scanner calibration method using subspace division regression analysis and it were compared with conventional method.

  • PDF

Autonomous Calibration of a 2D Laser Displacement Sensor by Matching a Single Point on a Flat Structure (평면 구조물의 단일점 일치를 이용한 2차원 레이저 거리감지센서의 자동 캘리브레이션)

  • Joung, Ji Hoon;Kang, Tae-Sun;Shin, Hyeon-Ho;Kim, SooJong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.218-222
    • /
    • 2014
  • In this paper, we introduce an autonomous calibration method for a 2D laser displacement sensor (e.g. laser vision sensor and laser range finder) by matching a single point on a flat structure. Many arc welding robots install a 2D laser displacement sensor to expand their application by recognizing their environment (e.g. base metal and seam). In such systems, sensing data should be transformed to the robot's coordinates, and the geometric relation (i.e. rotation and translation) between the robot's coordinates and sensor coordinates should be known for the transformation. Calibration means the inference process of geometric relation between the sensor and robot. Generally, the matching of more than 3 points is required to infer the geometric relation. However, we introduce a novel method to calibrate using only 1 point matching and use a specific flat structure (i.e. circular hole) which enables us to find the geometric relation with a single point matching. We make the rotation component of the calibration results as a constant to use only a single point by moving a robot to a specific pose. The flat structure can be installed easily in a manufacturing site, because the structure does not have a volume (i.e. almost 2D structure). The calibration process is fully autonomous and does not need any manual operation. A robot which installed the sensor moves to the specific pose by sensing features of the circular hole such as length of chord and center position of the chord. We show the precision of the proposed method by performing repetitive experiments in various situations. Furthermore, we applied the result of the proposed method to sensor based seam tracking with a robot, and report the difference of the robot's TCP (Tool Center Point) trajectory. This experiment shows that the proposed method ensures precision.

Evaluation of GSICS Correction for COMS/MI Visible Channel Using S-NPP/VIIRS

  • Jin, Donghyun;Lee, Soobong;Lee, Seonyoung;Jung, Daeseong;Sim, Suyoung;Huh, Morang;Han, Kyung-soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.169-176
    • /
    • 2021
  • The Global Space-based Inter-Calibration System (GSICS) is an international partnership sponsored by World Meteorological Organization (WMO) to continue and improve climate monitoring and to ensure consistent accuracy between observation data from meteorological satellites operating around the world. The objective for GSICS is to inter-calibration from pairs of satellites observations, which includes direct comparison of collocated Geostationary Earth Orbit (GEO)-Low Earth Orbit (LEO) observations. One of the GSICS inter-calibration methods, the Ray-matching technique, is a surrogate approach that uses matched, co-angled and co-located pixels to transfer the calibration from a well calibrated satellite sensor to another sensor. In Korea, the first GEO satellite, Communication Ocean and Meteorological Satellite (COMS), is used to participate in the GSICS program. The National Meteorological Satellite Center (NMSC), which operated COMS/MI, calculated the Radiative Transfer Model (RTM)-based GSICS coefficient coefficients. The L1P reproduced through GSICS correction coefficient showed lower RMSE and Bias than L1B without GSICS correction coefficient applied. The calculation cycles of the GSICS correction coefficients for COMS/MI visible channel are provided annual and diurnal (2, 5, 10, 14-day), but long-term evaluation according to these cycles was not performed. The purpose of this paper is to perform evaluation depending on the annual/diurnal cycles of COMS/MI GSICS correction coefficients based on the ray-matching technique using Suomi-NPP/Visible Infrared Imaging Radiometer Suite (VIIRS) data as reference data. As a result of evaluation, the diurnal cycle had a higher coincidence rate with the reference data than the annual cycle, and the 14-day diurnal cycle was the most suitable for use as the GSICS correction coefficient.

The comparative algorithm of the design data in the photomask inspection machine with high resolution (Photomask 고해상도 검사기에서 설계 데이터 비교 알고리즘)

  • Kim, Hoi-Sub;Oh, Chang-Seog;Ahn, Tae-Wan
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • Three categories such as the design of a machine, control and software are necessary in the development of the photomask inspection machine with high resolution. Among them, the design of a software detects inferiority through the comparison of CAD data and real data read by camera from photomask. The block matching algorithm is used since the domain is large and the comparison of data by pixel is accomplished. To correct the error arising from the assembly of a machine, calibration algorithm is used and prefocusing algorithm is suggested to correct the surface of the photomask.

  • PDF

A Calibration Technique and its Error Analysis for the Position of Seabed Sonar Target (해저고정 소나표적의 위치교정기법과 오차해석)

  • 이상국;이용곤
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.15-21
    • /
    • 2003
  • This paper contains a precise calibration technique for the position of seabed acoustic target and theoretical error analysis of calibration results. The target is deployed on seabed as a standalone transponder. The purpose of target is performing accuracy test for active sonar as well as position calibration itself. For the position calibration, relative range between target and test vessel should be measured using target's transponder function. The relative range data combined with vessel position can be converted into a estimated position of target by the application of nonlinear LSE method. The error analysis of position calibration was divided into two stages. One is for relative range estimator and the other for target position estimator. Numerical simulations for position calibration showed good matching between results and developed CRLB.