• Title/Summary/Keyword: calculation models

Search Result 1,086, Processing Time 0.025 seconds

An Experimental Dosimetry of Irregularly Shaped Fields Using Therapeutic Planning Computer (치료계획용 컴퓨터를 이용한 부정형조사면의 선량분포에 관한 실험)

  • Kwon Hyoung Cheol;Oh Yoon Kyeong;Yoon Sei Chul;Bahk Young Whee
    • Radiation Oncology Journal
    • /
    • v.2 no.2
    • /
    • pp.281-285
    • /
    • 1984
  • The authors have intended to measure intrinsic dose distribution by Farmer dosimeter in irregularly shaped fields such as L.M and T shape models in order to determine dose inhomogeneity in those models. We made 2 off·axis points in each model and measured the depth dose at 1.5, 5 and 9cm below surface. The results showed $l\~3\%$ dose discrepancy between 2 points. We also measured the depth dose by geometric approximation and computer calculation in those models, and came to the conclusion that computer calculation using Clarkson's principle is simpler and the measurements are closer to the ideal data obtained by the experiment in three models of irregularly shaped fields than those of geometric approximation method.

  • PDF

The Effects of Initial Droplet Shape and Number Density on Modeling of Non-evaporating Diesel Sprays (디젤분무의 모델에서 액적의 형상 및 수밀도의 영향에 관한 연구)

  • Won, Y.H.
    • Journal of ILASS-Korea
    • /
    • v.7 no.2
    • /
    • pp.22-30
    • /
    • 2002
  • A number of droplet breakup models have been developed to predict the diesel spray. The capabilities of droplet deformation and breakup models such as TAB, ETAB, DDB and APTAB models are evaluated in modeling the non-evaporating diesel sprays injected into atmosphere. New methods are also suggested that take into account the non- spherical shape of droplets and the reduced drag force by the presence of neighbouring droplets. The KIVA calculations with standard ETAB, DDB, and APTAB models predict well the spray tip penetrations of the experiment, but overestimate the Sauter mean Diameter(SMD) of droplets. The calculation with non spherical droplets injected from the nozzle shows very similar results to the calculation with spherical droplets. The drag coefficient which is linearly increased with the time after start of injection during the breakup time gives the smaller SMD that agrees well with the experimental result.

  • PDF

The Determination of Earthwork Volume using LiDAR Data (LiDAR 데이터를 이용한 토공량 산정)

  • Kang Joon-Mook;Yoon Hee-Cheon;Min Kwan-Sik;We Gwang-Jae
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.533-540
    • /
    • 2006
  • In recent years, civil-engineering work is desired the terrain information to be more efficient in earthwork volume calculation. One method for collecting elevation data is LiDAR. Lidar data was used to produce rapidly an accurate digital elevation model of the terrain, compared with the conventional ground surveys, photogrammetty, and remote sensing. Raw Lidar data is combined with GPS positional data to georeference the data sets. Lidar data is edited and processed to generate surface models, elevation models, and contours. Here we can either create a Tin Volume Surface or a Gird Volume Surface. Triangulated Irregular Network(TIN) has complex data structure, but it can describe well terrain surface features. As we have seen, we search the efficiency for earthwork volume calculation using Lidar data. One conclusion we can draw from this study is that Lidar data is more accurate result than digital map in the calculation of earthwork volume.

  • PDF

MULTI-SCALE THERMAL-HYDRAULIC ANALYSIS OF PWRS USING THE CUPID CODE

  • Yoon, Han Young;Cho, Hyoung Kyu;Lee, Jae Ryong;Park, Ik Kyu;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.831-846
    • /
    • 2012
  • KAERI has developed a two-phase CFD code, CUPID, for a refined calculation of transient two-phase flows related to nuclear reactor thermal hydraulics, and its numerical models have been verified in previous studies. In this paper, the CUPID code is validated against experiments on the downcomer boiling and moderator flow in a Calandria vessel. Physical models relevant to the validation are discussed. Thereafter, multi-scale thermal hydraulic analyses using the CUPID code are introduced. At first, a component-scale calculation for the passive condensate cooling tank (PCCT) of the PASCAL experiment is linked to the CFD-scale calculation for local boiling heat transfer outside the heat exchanger tube. Next, the Rossendorf coolant mixing (ROCOM) test is analyzed by using the CUPID code, which is implicitly coupled with a system-scale code, MARS.

Performance Comparison of Optimal Power Flow Algorithms for LMP Calculations of the Full Scale Korean Power System

  • Lee, Sungwoo;Kim, Wook;Kim, Balho H.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.109-117
    • /
    • 2015
  • This paper proposes the comparison results of various optimal power flow algorithms (OPF) to calculate the locational marginal prices (LMP) of the unreduced full scale Korean transmission system. Five different types of optimal power flow models are employed: Full AC OPF, Cubic AC OPF, Quadratic AC OPF, Linear AC OPF and DC OPF. As the results, full AC OPF and cubic AC OPF model provides LMP calculation results very similar to each other while the calculation time of cubic AC OPF model is faster than that of the Full AC OPF. Other simplified OPF models, quadratic AC OPF, linear AC OPF and DC OPF offer erroneous results even though the calculation times are much faster than the Full AC OPF and the Cubic AC OPF. Given the condition that the OPF models sometimes fail to find the optimal solution due to the severe complexity of the Korean transmission power system, the Full AC OPF should be used as the primary OPF model while the Cubic AC OPF can be a promising backup OPF model for the LMP calculations and/or real-time operation.

Prediction of Ship Manoeuvrability in Initial Design Stage Using CFD Based Calculation

  • Cho, Yu-Rim;Yoon, Bum-Sang;Yum, Deuk-Joon;Lee, Myen-Sik
    • Journal of Ship and Ocean Technology
    • /
    • v.11 no.1
    • /
    • pp.11-24
    • /
    • 2007
  • Better prediction of a ship's manouevrabilty in initial design stage is becoming more, important as IMO manoeuvring criteria has been activated in the year of 2004. In the present study, in order to obtain more exact and reliable results for ship manoeuvrability in the initial design stage, numerical simulation is carried out by use of RANS equation based calculation of hydrodynamic forces exerted upon the ship hull. Other forces such as rudder force and propeller force are estimated by one of the empirical models recommended by MMG Group. Calculated hydrodynamic force coefficients are compared with those obtained by empirical models. Standard manoeuvring simulations such as turning circle and zig-zag are also carried out for a medium size Product Carrier and the results are compared with those of pure empirical models and manoeuvring sea trial. Generally good qualitative agreement is obtained in hydrodynamic forces due to steady oblique motion and steady turning motion between the results of CFD calculation and those of MMG model, which is based on empirical formulas. The results of standard manoeuvring simulation also show good agreement with sea trial results.

Evaluation and Comparison of the Solubility Models for Solute in Monosolvents

  • Min-jie Zhi;Wan-feng Chen;Yang-bo Xi
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.53-69
    • /
    • 2024
  • The solubility of Cloxacillin sodium in ethanol, 1-propanol, isopropanol, and acetone solutions was measured at different temperatures. The melting property was also tested by using a differential scanning calorimeter (DSC). Then, the solubility data were fitted using Apelblat equation and λh equation, respectively. The Wilson model and NRTL model were not utilized to correlate the test data, since Cloxacillin sodium will decompose directly after melting. For comparison purposes, the four empirical models, i.e., Apelblat equation, λh equation, Wilson model and NRTL Model, were evaluated by using 1155 solubility curves of 103 solutes tested under different monosolvents and temperatures. The comparison results indicate that the Apelblat equation is superior to the others. Furthermore, a new method (named the calculation method) for determining the Apelblat equation using only three data points was proposed to solve the problem that there may not be enough solute in the determination of solubility. The log-logistic distribution function was used to further capture the trend of the correlation and to make better quantitative comparison between predicted data and the experimental ones for the Apelblat equation determined by different methods (fitting method or calculation method). It is found that the proposed calculation method not only greatly reduces the number of test data points, but also has satisfactory prediction accuracy.

An Analysis of Pre-service Teachers' Pedagogical Content Knowledge about Decimal Calculation (소수연산에 관한 예비초등교사의 교수내용지식 분석)

  • Song, Keun-Young;Pang, Jeong-Suk
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.12 no.1
    • /
    • pp.1-25
    • /
    • 2008
  • The purpose of this study was to identify pre-service teachers' Pedagogical Content Knowledge (PCK) about decimal calculation. A written questionnaire was developed dealing with decimal calculation. A total of 152 pre-service teachers from 3 universities were selected for this study; they had taken an elementary mathematics teaching method course and had no teaching experience. The results were as follows: First, with regard to the method of decimal calculation, most pre-service teachers were familiar with algorithms introduced in the textbook. But with regard to the meaning of decimal calculations, they had difficulties in understanding decimal multiplication or decimal division with decimal number. Second, pre-service teachers recognized reasons of errors as well as errors patterns that student might make. But this recognition was limited mainly to errors related to natural number calculation. Third, pre-service teachers frequently commented about decimals algorithms, picture models, the meanings of decimal calculations, and connections to natural number calculations. Many of them represented the meanings of decimal calculations through picture models as to help students' understanding, while they just mentioned algorithms or treated decimal calculation as natural number calculations with decimal point.

  • PDF

An Experimental Dosimetry of Irregularly-Shaped-Field Using Therapeutic Planning Computer (치료계획용 콤퓨터를 이용한 부정형 조사면의 선량분포에 관한 실험)

  • Park, Joo-Sun;Lee, Gui-Won;Han, Yong-Moon;Kwon, Hyoung-Cheol;Yoon, Sei-Chul
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.2 no.1
    • /
    • pp.87-92
    • /
    • 1987
  • The authors have intended to measure intrinsic dose distribution by Farmer dosimeter in irregularly shaped fields such as L, M, T,-shape model in order to determine dose inhomogeneity in those models. We made 2 off-axis points in each model and measured the depth dose at 1.5,5, and 9cm below surface. The results showed $1-3\%$ dose discrepancy between 2 points. We also measured the depth dose by geometric approximation and computer calculation in those models, and came to the conclusion that computer calculation using Clarkson's principle is simpler and the measurements are to the ideal data obtained by the experiment in those three models of irregularly shaped fields than those of geometric approximation method.

  • PDF

Assessment of Reynolds Stress Turbulence Closures in the Calculation of a Transonic Separated Flow

  • Kim, Kwang-Yong;Son, Jong-Woo;Cho, Chang-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.889-894
    • /
    • 2001
  • In this study, the performances of various turbulence closure models are evaluated in the calculation of a transonic flow over axisymmetric bump. k-$\varepsilon$, explicit algebraic stress, and two Reynolds stress models, i.e., GL model proposed by Gibson & Launder and SSG model proposed by Speziale, Sarkar and Gatski, are chosen as turbulence closure models. SSG Reynolds stress model gives best predictions for pressure coefficients and the location of shock. The results with GL model also show quite accurate prediction of pressure coefficients down-stream of shock wave. However, in the predictions of mean velocities and turbulent stresses, the results are not so satisfactory as in the prediction of pressure coefficients.

  • PDF