• Title/Summary/Keyword: calcium phosphate coating

Search Result 33, Processing Time 0.032 seconds

SURFACE ANALYSES OF TITANIUM SUBSTRATE MODIFIED BY ANODIZATION AND NANOSCALE Ca-P DEPOSITION

  • Lee, Joung-Min;Kim, Chang-Whe;Lim, Young-Jun;Kim, Myung-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.6
    • /
    • pp.795-804
    • /
    • 2007
  • Statement of problem. Nano-scale calcium-phosphate coating on the anodizing titanium surface using ion beam-assisted deposition (IBAD) has been recently introduced to improve the early osseointegration. However, not much is known about their surface characteristics that have influence on tissue-implant interaction. Purpose. This study was aimed to investigate microtopography, surface roughness, surface composition, and wettability of the titanium surface modified by the anodic oxidation and calcium phosphate coating using IBAD. Material and methods. Commercially pure titanium disks were used as substrates. The experiment was composed of four groups. Group MA surfaces represented machined surface. Group AN was anodized surface. Group CaP/AN was anodic oxidized and calcium phosphate coated surfaces. Group SLA surfaces were sandblasted and acid etched surfaces. The prepared titanium discs were examined as follows. The surface morphology of the discs was examined using SEM. The surface roughness was measured by a confocal laser scanning microscope. Phase components were analyzed using thin-film x-ray diffraction. Wettability analyses were performed by contact angle measurement with distilled water, formamide, bromonaphtalene and surface free energy calculation. Results. (1) The four groups showed specific microtopography respectively. Anodized and calcium phosphate coated specimens showed multiple micropores and tiny homogeneously distributed crystalline particles. (2) The order of surface roughness values were, from the lowest to the highest, machined group, anodized group, anodized and calcium phosphate deposited group, and sandblasted and acid etched group. (3) Anodized and calcium phosphate deposited group was found to have titanium and titanium anatase oxides and exhibited calcium phosphorous crystalline structures. (4) Surface wettability was increased in the order of calcium phosphate deposited group, machined group, anodized group, sandblasted and acid etched group. Conclusion. After ion beam-assisted deposition on anodized titanium, the microporous structure remained on the surface and many small calcium phosphorous crystals were formed on the porous surface. Nanoscale calcium phosphorous deposition induced roughness on the microporous surface but hydrophobicity was increased.

Evaluation Physical Characteristics of Coating Materials for Forage Seed Coating by Coating Index (피복지수에 의한 목초종자 피복제의 물리적 특성 평가)

  • 이성운;허삼남;김택림
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.24 no.2
    • /
    • pp.155-162
    • /
    • 2004
  • Different adhesives(CF-clear, arabic gum, cethylmethyl cellulose, polyvinyl alcohol, polyvinyl pyrrolidone, hydroxy propyl cellulose, methyl cellulose) and particulate matters(bentonite, kaolin, calcium carbonate, peatmoss, talcum, vermiculite, zeolite, calcium hydroxide, plaster, calcium phosphate, vermiculite + calcium carbonate, vermiculite + kaolin, vermiculite + talcum) were evaluated by coating index method. According to the weight of single coated seeds, CF-clear and polyvinyl alcohol appeared to be the best coating adhesives for red clover and tall fescue seeds. Both vermiculite and vermiculite + talc(l : 1) for red clover, and vermiculite + talc(l : 1) for tall fescue appeared to be the best particulate matter(P < 0.01). Percent friability showed excellent results for the arabic gum, CF-clear, and polyvinyl alcohol when compared to others(p < 0.01). The coating index showed high with vermiculite and vermiculite + talc(l : 1) in coating red clover seed, and talc, vermiculite, and vermiculite + talc showed good coating index in coating tall fescue seed.

DEVELOPMENT OF MICROPOROUS CALCIUM PHOSPHATE COATED NERVE CONDUIT FOR PERIPHERAL NERVE REPAIR (말초신경 재건을 위한 인회석 박막 코팅 미세공성 신경재생관(nerve conduit)의 개발)

  • Lee, Jong-Ho;Hwang, Soon-Jeong;Choi, Won-Jae;Kim, Soung-Min;Kim, Nam-Yeol;Lee, Eun-Jin;Ahn, Kang-Min;Myung, Hoon;Seo, Byoung-Moo;Choi, Jin-Young;Choung, Pill-Hoon;Kim, Myung-Jin;Kim, Hyun-Man
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.29 no.3
    • /
    • pp.151-156
    • /
    • 2003
  • This study was performed to develop a useful nerve conduit which provides favorable environment for Schwann cell viability and proliferation. Milipore membrane of $0.45{\mu}m$ pore size was selected because it permits nutritional inflow from the outside of the conduit and prevents from invading the fibrotic tissue into the conduit. The membrane was rolled and sealed to form a conduit of 2mm diameter and 20mm length. To improve the axonal regeneration and to render better environment for endogenous and exogenous Schwann cell behaviour, the microgeometry and surface of conduit was modified by coating with thin film of calcium phosphate. Cellular viability within the conduit and attachment to its wall were assessed with MTT assay and SEM study. Milipore filter conduit showed significantly higher rate of Schwann cell attachment and viability than the culture dish. However, the reverse was true in case of fibroblast. Coating with thin film of low crystalline calcium phosphate made more favorable environment for both cells with minimal change of pore size. These findings means the porous calcium phosphate coated milipore nerve conduit can provide much favorable environment for endogenous Schwann cell proliferation and exogenous ones, which are filled within the conduit for the more advanced strategy of peripheral nerve regeneration, with potential of reducing fibrotic tissue production.

Cell attachment and proliferation of bone marrow-derived osteoblast on zirconia of various surface treatment

  • Pae, Ahran;Lee, Heesu;Noh, Kwantae;Woo, Yi-Hyung
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.2
    • /
    • pp.96-102
    • /
    • 2014
  • PURPOSE. This study was performed to characterize the effects of zirconia coated with calcium phosphate and hydroxyapatite compared to smooth zirconia after bone marrow-derived osteoblast culture. MATERIALS AND METHODS. Bone marrow-derived osteoblasts were cultured on (1) smooth zirconia, (2) zirconia coated with calcium phosphate (CaP), and (3) zirconia coated with hydroxyapatite (HA). The tetrazolium-based colorimetric assay (MTT test) was used for cell proliferation evaluation. Scanning electron microscopy (SEM) and alkaline phosphatase (ALP) activity was measured to evaluate the cellular morphology and differentiation rate. X-ray photoelectron spectroscopy (XPS) was employed for the analysis of surface chemistry. The genetic expression of the osteoblasts and dissolution behavior of the coatings were observed. Assessment of the significance level of the differences between the groups was done with analysis of variance (ANOVA). RESULTS. From the MTT assay, no significant difference between smooth and surface coated zirconia was found (P>.05). From the SEM image, cells on all three groups of discs were sporadically triangular or spread out in shape with formation of filopodia. From the ALP activity assay, the optical density of osteoblasts on smooth zirconia discs was higher than that on surface treated zirconia discs (P>.05). Most of the genes related to cell adhesion showed similar expression level between smooth and surface treated zirconia. The dissolution rate was higher with CaP than HA coating. CONCLUSION. The attachment and growth behavior of bone-marrow-derived osteoblasts cultured on smooth surface coated zirconia showed comparable results. However, the HA coating showed more time-dependent stability compared to the CaP coating.

A study on the evaluation of phosphate removal efficiency using Fe-coated silica sand (철 코팅 규사의 인산이온 제거 효율 평가 연구)

  • Jo, Eunyoung;Kim, Younghee;Park, Changyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.521-527
    • /
    • 2017
  • Phosphorus is one of the limiting nutrients for the growth of phytoplankton and algae and is therefore one of leading causes of eutrophication. Most phosphorous in water is present in the form of phosphates. Different technologies have been applied for phosphate removal from wastewater, such as physical, chemical precipitation by using ferric, calcium or aluminum salts, biological, and adsorption. Adsorption is one of efficient method to remove phosphates in wastewater. To find the optimal media for phosphate removal, physical characteristics of media was analysed, and the phosphate removal efficiency of media (silica sand, slag, zeolite, activated carbon) was also investigated in this study. Silica sand showed highest relative density and wear rate, and phosphate removal efficiency. Silica sand removed about 36% of phosphate. To improve the phosphate removal efficiency of silica sand, Fe coating was conducted. Fe coated silica sand showed 3 times higher removal efficiency than non-coated one.

A study on the biological characteristics of modified titanium surface (매식체 표면처리에 따른 생물학적 특성에 대한 연구)

  • Kim, Jae-Hyuk;Chung, Chin-Hyung;Lim, Sung-Bin;Hong, Ki-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.3
    • /
    • pp.453-466
    • /
    • 2008
  • Purpose: The purpose of this research is to study about initial adhesion, proliferation and activation of osteoblast to titanium surface treated with machined, hydroxyapatite coating, resorbable blast material blasting and anodizing method. Material and Methods: After treating the titanium surface of each block with machined, impurities were removed and sterilized. The number of cells attached from cultured osteoblast of respective experimental groups were measured at 1, 4, 7, and 14day and alkaline phosphatase, calcium, and inorganic phosphate concentration of cultured solution was measured. Result: Anodizing group showed the highest rate of cell attachment and proliferation activity. RBM treated group showed the highest increasing on their alkaline phosphatase activity, on the calcium apposition, on inorganic phosphate apposition of 1 and 4 days in cultured osteoblast to compare with other groups. Conclusion: On the basis of these findings, we conclude that surface modification of titanium was profoundly effected on the attachment, proliferation and activation of osteoblast in initial stage osseointegration.

Histomorphometric study of machined titanium implants and calcium phosphate coated titanium implants (Machined 티타늄 임플란트와 calcium phosphate coated 티타늄 임플란트의 조직형태계측학적 연구)

  • Kang, Hyun-Joo;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.2
    • /
    • pp.122-127
    • /
    • 2010
  • Purpose: The objective of this study was to investigate the effects of calcium phosphate coated titanium implant surface on bone response and implant stability at early stage of healing period of 3 weeks and later healing period of 6 weeks. Material and methods: A total of 24 machined, screw-shaped implants (Dentium Co., Ltd., Seoul, Korea) which dimensions were 3.3 mm in diameter and 5.0 mm in length, were used in this research. All implants (n = 24), made of commercially pure (grade IV) titanium, were divided into 2 groups. Twelve implants (n = 12) were machined without any surface modification (control). The test implants (n = 12) were anodized and coated with thin film (150nm) of calcium phosphate by electron-beam deposition. The implants were placed on the proximal surface of the rabbit tibiae. The bone to implant contact (BIC) ratios was evaluated after 3 and 6 weeks of implant insertion. Results: The BIC percentage of calcium phosphate coated implants ($70.8{\pm}18.9%$) was significantly higher than that of machined implants ($44.1{\pm}16.5%$) 3 weeks after implant insertion (P = 0.0264). However, there was no significant difference between the groups after 6 weeks of healing (P > .05). Conclusion: The histomorphometric evaluation of implant surface revealed that; 1. After 3 weeks early healing period, bone to implant contact (BIC) percentage of calcium phosphate coated implants (70.8%) was much greater than that of surface untreated machined implants (44.1%) with P = 0.0264. 2. After 6 weeks healing period, however, BIC percentage of calcium phosphate coated implants group (79.0%) was similar to the machined only implant group (78.6%). There was no statistical difference between two groups (P = 0.8074). 3. We found the significant deference between the control group and experimental group during the early healing period of 3 weeks. But no statistical difference was found between two groups during the later of 6 weeks.

Bone Nodule Formation of MG63 Cells is Increased by the Interplay of Signaling Pathways Cultured on Vitamin $D_3$-Entrapped Calcium Phosphate Films

  • Choi, Yong-Seok;Hong, Yoon-Jung;Hur, Jung;Kim, Mee-Young;Jung, Jae-Young;Lee, Woo-Kul;Jeong, Sun-Joo
    • Animal cells and systems
    • /
    • v.13 no.4
    • /
    • pp.363-370
    • /
    • 2009
  • Since vitamin $D_3$ is an important regulator of osteoblastic differentiation, a presently-established vitamin $D_3$-entrapped calcium phosphate film (VCPF) was evaluated for hard tissue engineering. The entrapped vitamin $D_3$ more rapidly induced bone nodule formation. To characterize the cellular events leading to regulations including faster differentiation, signal transduction pathways were investigated in osteoblastic MG63 cells at a molecular level. Major signaling pathways for MG63 cell proliferation including phosphatidylinositol-3-kinase, extracellular signal-regulated kinase, c-Jun N-terminal kinase and focal adhesion kinase pathways were markedly down-regulated when cells were cultured on calcium phosphate film (CPF) and VCPF. This agreed with our earlier observations of the immediate delay in proliferation of MG63 cells upon culture on CPF and VCPF. On the other hand, the p38 mitogen-activated protein kinase (p38 MAPK) and protein kinase A (PKA) pathways were significantly up-regulated on both CPF and VCPF. CPF alone could simulate differential behaviors of MG63 cells even in the absence of osteogenic stimulation and entrapment of vitamin $D_3$ within CPF further amplified the signal pathways, resulting in continued promotion of MG63 cell differentiation. Interplay of p38 MAPK and PKA signaling pathways likely is a significant event for the promotion of differentiation and mineralization of MG63 cells.

Fabrication of Ferroelectric BaTiO3Thin Film on Ti Substrate and Formation of Calcium Phosphate in Eagle’s MEM Solution (티타늄 기판 위에 강유전성 BaTiO3박막 형성과 분극처리에 의한 Eagle’s MEM 용액에서의 Calcium Phosphate 생성)

  • Lee, Yong-Ryeol;Jeong, Young-Hwa;Hwang, Kyu-Seog;Song, Ho-Jun;Park, Yeong-Joon
    • Korean Journal of Materials Research
    • /
    • v.12 no.7
    • /
    • pp.560-567
    • /
    • 2002
  • Titanium (Ti) is a bioinert material and has lower elastic coefficient and better strength/volume property than other metals. Ferroelectric materials show alignment of positive and negative charges by poling treatment. This study was purposed to develop a new implant system by combining the advantages of Ti and ferroelectric property of $BaTiO_3$ (BTO). It was performed with the assumption that the $Ca^{2+ }$ ions would be easily attracted on negatively charged surface and the attracted cation might behave as nuclei for bone-like crystal growth in biological solutions. A ferroelectric BTO thin film on Ti was fabricated and the effect of poling treatment on the improvement of calcium phosphate (Ca-P) formation in biological solutions was evaluated. After immersion in Eagle’s minimum essential media (MEM) solution, NaCl was formed on Ti, and Ca-P layer containing NaCl was formed on Ti-O. Weak and sparse Ca-P layers were formed on BTO, while thick, homogeneous, and dense Ca-P layer was formed on negatively polarized BTO (N-BTO), which was confirmed by FE-SEM and EDX. In summary, these results demonstrate that poling the ferroelectric BTO surface negatively is effective for the formation of Ca-P layer in MEM solution, and that N-BTO coating on Ti could be used as a possible alternative method for enhancing the osseointegration of the implants.