• Title/Summary/Keyword: calcium carbonate powder

Search Result 59, Processing Time 0.021 seconds

Non-isothermal Behavior of Calcium Carbonate (탄산칼슘의 비등온 열적거동)

  • Sohn, Yong-Un;Lim, Jae-Won;Choi, Good-Sun
    • Journal of Powder Materials
    • /
    • v.16 no.3
    • /
    • pp.167-172
    • /
    • 2009
  • This study has been carried out to investigate the non-isothermal behaviors and kinetic parameter of calcium carbonate by different thermal analysis methods. At the heating rate of $10^{\circ}C$/min, the onset calcination temperature, the peak and final temperatures of calcium carbonate were $612^{\circ}C$, $748^{\circ}C$, and $890^{\circ}C$ respectively. As the heating rate of the calcium carbonate increased from $5^{\circ}C$/min to $20^{\circ}C$/min, the peak temperature increased from $719^{\circ}C$ to $782^{\circ}C$. The activation energies of the calcium carbonate calculated by the methods of Kissinger and Freeman-Carroll were 40.15 kcal/mol and 43.47 kcal/mol, respectively.

Quality Characteristics and Antioxidant Activity of Calcium-added Garlic Yanggaeng (칼슘 첨가 마늘 페이스트로 제조한 양갱의 품질특성 및 항산화성)

  • Jeon, Mi-Ra;Kim, Min-Hee;Son, Chan-Wok;Kim, Mee-Ree
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.2
    • /
    • pp.195-200
    • /
    • 2009
  • This study was performed to investigate the quality characteristics and antioxidant activity of garlic yanggaeng added with several calcium sources (calcium carbonate, calcium citrate, calcium lactate, mixed calcium and calcium powder). The pH and lightness of calcium-added garlic yanggaeng decreased compared with control. Lightness of garlic yanggaeng added with calcium lactate, calcium carbonate and calcium powder was similar with that of control. As for texture profile analysis, hardness of garlic yanggaeng added with calcium lactate, calcium carbonate and calcium powder was increased compared to control. The antioxidant activities determined by DPPH and hydroxyl radical scavenging activities of the garlic yanggaeng added with calcium lactate, calcium carbonate and calcium powder were significantly higher than those of control. The pungent and taste of garlic were reduced in garlic yanggaeng added with calcium lactate, calcium carbonate and calcium powder. Consumer test showed that the score of overall acceptance was higher in the garlic yanggaeng added with calcium lactate and calcium carbonate, compared to those of other calcium sources. Based on these results, it was suggested that garlic paste added with calcium carbonate or calcium lactate may be useful materials to improve quality of garlic yanggaeng.

Biocementation via soybean-urease induced carbonate precipitation using carbide slag powder derived soluble calcium

  • Qi, Yongshuai;Gao, Yufeng;Meng, Hao;He, Jia;Liu, Yang
    • Geomechanics and Engineering
    • /
    • v.29 no.1
    • /
    • pp.79-90
    • /
    • 2022
  • Soybean-urease induced carbonate precipitation (EICP), as an alternative to microbially induced carbonate precipitation (MICP), was employed for soil improvement. Meanwhile, soluble calcium produced from industrial waste carbide slag powder (CSP) via the acid dissolution method was used for the EICP process. The ratio of CSP to the acetic acid solution was optimized to obtain a desirable calcium concentration with an appropriate pH. The calcium solution was then used for the sand columns test, and the engineering properties of the EICP-treated sand, including unconfined compressive strength, permeability, and calcium carbonate content, were evaluated. Results showed that the properties of the biocemented sand using the CSP derived calcium solution were comparable to those using the reagent grade CaCl2. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses revealed that spherical vaterite crystals were mainly formed when the CSP-derived calcium solution was used. In contrast, spherical calcite crystals were primarily formed as the reagent grade CaCl2 was used. This study highlighted that it was effective and sustainable to use soluble calcium produced from CSP for the EICP process.

Synthesis of Ultrafine Calcium Carbonate powders by nozzle Spouting Method (분사법에 의한 초미립 경질 탄산 칼슘 분말의 합성)

  • Ahn, Ji-Whan;Park, Charn-Hoon;Kim, Jeong-Heo;Lee, Jong-Kook;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.11
    • /
    • pp.1276-1284
    • /
    • 1996
  • Ultrafine calcim carbonate powders with the size of 0.05~0.1 ${\mu}{\textrm}{m}$ and the calcite phase were prepared by the nozzle spouting method which was conducted by spouting calcium hydroxide slurry in reactor filled with CO2 gas. Well dispersed ultra-fine particles were synthesized in condition of high Ca(OH)2 concentration of the slurry ( 0.5wt%) synthesized calcium carbonate powder was shown the large particle size with agglo-meration.

  • PDF

Effect of Mixed Ratios of Ground Improvement Material using Microorganisms on the Strength of Sands (미생물을 활용한 지반개량제의 혼합비율에 따른 사질토의 강도개선 효과)

  • Park, Kyung-Ho;Kim, Daehyeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.2
    • /
    • pp.1-9
    • /
    • 2015
  • In this study, the objective of the study is to evaluate the effect of calcium carbonate powder, produced by the microbial reactions, on the strength of soft ground (sand). To analyze the cementation effects of calcium carbonate powder produced by microbial reactions on the strength of the sand, six different types of specimens (untreated, calcium carbonate, cement, carbonate+cement (1:9, 3:7, 5:5)) were made. The specimen were tested after curing (7 and 28 days). Uniaxial compressive strengths were measured on $D5cm{\times}H10cm$ specimens. Based on the test results, as both the weight ratio and the curing period increase, calcium carbonate, cement, and calcium carbonate+cement specimens showed an increase in the strength. In addition, compared with the strength of the specimen with cement, the strengths of the specimens with mixing ratios of 1:9, 3:7, and 5:5 (carbonate : cement) were found to be 93.5~95.8%, 825.%, 65.2~70.6%.

Synthesis of ultrafine calcium carbonate powders from high concentrated calcium hydroxide solution (고농도 수산화칼슘 수용액으로부터 초미립 경질 탄산칼슘 분말의 합성)

  • Ahn, Ji-Whan;Park, Charn-Hoon;Kim, Jeong-Heo;Lee, Jong-Kook;Kim, Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.509-520
    • /
    • 1996
  • Ultrafine calcim carbonate powders with the size of $0.05~0.1\;{\mu}m$ and the calcite phase were synthesized by the nozzle spouting method, which could be only obtained when high calcium ion concentration within slurry was maintained at the beginning of the reaction. But, in the regions of low ${Ca(OH)}_2$ concentration (0.5~1.0 wt%) or high ${Ca(OH)}_2$ concentration (<3.0 wt%), synthesized calcium carbonate powder was shown the large particle size with agglomeration. To obtain ultrafine calcium carbonate powder in this region, the methods of slurry circuation and $CO_{2}$ gas supply were changed during reaction. Resultly, it was possible to synthesize ultrafine particles (${\approx}0.05{\mu}\textrm{m}$)in the regions of low ${Ca(OH)}_2$ concentration (${\approx}0.5wt%$) and high ${Ca(OH)}_2$ concentration (${\approx}0.5wt%$), which can not be obtained the fine calcium carbonate powder still now.

  • PDF

Quality Characteristics and Antioxidant Activities of Green Tea Garlic Paste added Calcium (칼슘첨가 녹차마늘 페이스트의 품질 특성 및 항산화성)

  • Son, Chan-Wok;Jeon, Mi-Ra;Kim, Min-Hee;Kim, Mee-Ree
    • Korean journal of food and cookery science
    • /
    • v.24 no.6
    • /
    • pp.876-881
    • /
    • 2008
  • The aim of this study was to evaluate the quality characteristics and antioxidant activities of green tea garlic paste added calcium. Garlic was heated with green tea and charcoal at high temperature ($120^{\circ}C$) and high pressure ($1.5\;kgf/cm^2$) for 20 min, and then added several calcium sources (calcium carbonate, calcium citrate, calcium lactate, mixed calcium, calcium powder). Calcium carbonate, mixed calcium or calcium powder significantly increased pH of green tea garlic paste (p<0.05). All kinds of calcium sources significantly increased the viscosity of green tea garlic paste (p<0.05). Solid soluble content of green tea garlic paste was increased only in calcium citrate and calcium powder groups. Lightness, redness and yellowness of green tea garlic paste with calcium were increased, compared with control group (green tea garlic paste without calcium). The antioxidant activities by DPPH and hydroxyl radical scavenging activity of green tea garlic paste added calcium citrate, calcium lactate or calcium carbonate group were much higher than those of the other control groups. The garlic odor and garlic taste by sensory test were significantly weaker in calcium carbonate or calcium citrate group (p<0.05). Based on these results, it was suggested that calcium carbonate or calcium citrate is appropriate material for deodorizing and fortifying agent for green tea garlic paste.

Physical Properties of Reinforced Soil-Mixture Powder (보강혼합토분의 물리적 특성)

  • 이상호;차현주;김철영;장병욱
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.336-340
    • /
    • 1999
  • This study was performed to evaluate the physical properties of reinforced soil-mixture powder. Soil was used to be powder that passed by the No. 200 mech and the reinforcement as calcium carbonate, quicklime and portland cement used for this study to improve soil. We resulted from fineness , setting time, and compressive strength test of reinforced soil-mixture powder. We've got the two conclusions . The first , in case that we were used reinforced soil-mixture powder included some portland cement, the higher the mixture rates of the reinforcement , the wider the difference theoretical data with experimental data. The second, the setting time of reinforced soil-mixture powder is faster than soil powder itself and the reinforcement for promoting strength was proved that calcium carbonate was proper than others if we compared it with other reinforcment.

  • PDF

Application of Powdered Waste Glasses and Calcium Carbonate for Improving the Properties of Artificial Lightweight Aggregate Made of Recycled Basalt Powder Sludge (현무암 석분 슬러지를 재활용한 인공경량골재의 물성개선을 위한 폐유리분말과 탄산칼슘의 활용)

  • Park, Soo-Je;Lee, Sung-Eun;Choi, Heebok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.230-236
    • /
    • 2014
  • This study was carried out to investigate the manufacturability of artificial lightweight aggregate as a way to recycle basalt powder sludge, which is a waste produced during the manufacturing process of basalt in Jeju. Powdered waste glasses and calcium carbonate are used to improve the characteristics of manufactured artificial lightweight aggregate. Especially, considering the complex factors of basalt powder sludge, powdered waste glasses, and sintering method, the amount of calcium carbonate is appropriate at the 9 wt.% in order to improve the intumescent of lightweight aggregate. Also, the amount of powdered waste glasses is effective with using less than 50 wt.% and applying the direct sintering method at the same time on decreasing the absorption of lightweight aggregate. Furthermore, in order to manufacture artificial lightweight aggregate of high quality with a low specific gravity and low water absorption, it is considered to be more effective to apply the direct sintering method after the surface of artificial lightweight aggregate is covered with powdered waste glasses.

Preparation of Needle like Aragonite Precipitated Calcium Carbonate (PCC) from Dolomite by Carbonation Method

  • Ramakrishna, Chilakala;Thenepalli, Thriveni;Huh, Jae-Hoon;Ahn, Ji Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.7-12
    • /
    • 2016
  • In this paper, we have developed a simple, new and economical carbonation method to synthesize a pure form of aragonite needles using dolomite raw materials. The obtained aragonite Precipitated Calcium Carbonate (PCC) was characterized by XRD and SEM, for the measurement of morphology, particle size, and aspect ratio (ratio of length to diameter of the particles). The synthesis of aragonite PCC involves two steps. At first, after calcinated dolomite fine powder was dissolved in water for hydration, the hydrated solution was mixed with aqueous solution of magnesium chloride at $80^{\circ}C$, and then $CO_2$ was bubbled into the suspension for 3 h to produce aragonite PCC. Finally, aragonite type precipitated calcium carbonate can be synthesized from natural dolomite via a simple carbonation process, yielding product with average particle size of $30-40{\mu}m$.