• Title/Summary/Keyword: cadmium ion

Search Result 135, Processing Time 0.028 seconds

Adsorption of Cadmium Ion by Wood Charcoal Prepared with Red oak (Quercus mongolica) (신갈나무 목탄의 카드뮴(Cd)이온 흡착 특성)

  • Jo, Tae-Su;Lee, Oh-Kyu;Choi, Joon-Weon;Byun, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.93-100
    • /
    • 2008
  • For investigation of adsoption properties of cadmium elimination by wood charcoal, $25m{\ell}$ aqueous cadmium solutions in various concentrations were treated with 0.2 g wood charcoal of Red Oak (Quercus mongolica) for 280 minutes. Almost 100% of cadmium elimination ratio was obtained in the solutions with initial concentration of 20 and 40 ppm in the treatment, whereas they were 75 and 50% in those of 80 and 160 ppm. In the effect of treatment time, the highest amount of cadmium ions was eliminated during the first ten minutes in each solution so that the elimination ratio of each case was over 70% of the maximum elimination value. From the analysis of adsorptive cadmium adsorption mechanism using the Langmuir adsorption isotherm, it was suggested that cadmium ion molecules were adsorbed at the active sites on the charcoal particle in form of one layer. The Gibbs free energy of the adsorption process was calculated in negative value for each solution. This means the adsorption processes are spontaneous which do not require the extra input energy.

Effects of Metal-ions on Enzyme Activities from Hansenula anomala B-7 Grown in Medium Containing Cadmium (카드뮴 함유 배지에서 배양된 Hansenula anomala B-7의 Malate Dehydrogenase 활성에 미치는 금속 이온의 영향)

  • Yu, Tae Shick
    • Korean Journal of Microbiology
    • /
    • v.34 no.4
    • /
    • pp.225-230
    • /
    • 1998
  • This study was carried out to investigate the effect of cadmium ion on activities of cadmium-adapted malate dehydrogenase (adapted-MDH), which is defined to be an enzyme obtained from an extreme cadmium-tolerant yeast Hansenula anomaul B-7 grown in medium containing 1 mM cadmium ion. Cadmium-nonadapted malate dehydrogenase (nonadapted-MDH), which is defined to be enzyme expressed in the cells grown in $Cd^{2+}$ -free medium was also characterized by the same manner. Activities of the adapted-MDH and the nonadapted-MDH were strongly induced to 450% and to 150% in comparision with the control examined with 1 mM $Cd^{2+}$, respectively. The adapted-MDH activity was stimulated to 147%, 150%, and 135% compared with the control analyzed with 1 mM $Zn^{2+}$, 1 mM $Mn^{2+}$, and 1 mM $Ca^{2+}$, respectively and to 925%, and 250% compared with the control analyzed in the presence of 2 mM $Cd^{2+}$, and 2.5 mM $Zn^{2+}$, respectively. Km values of the adapted-MDH and the nonadapted-MDH were calculated to be the same 6.9 mM for L-malate, respectively. The Km value of the nonadapted-MDH was not changed by $Cd^{2+}$ while Vmax of the nonadapted-MDH was increased by $Cd^{2+}$. In contrast, both the Km and the Vmax values of the adapted-MDH were changed by $Cd^{2+}$.

  • PDF

Real-time Voltammetric Assay of Cadmium Ions in Plant Tissue and Fish Brain Core

  • Ly, Suw-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1613-1617
    • /
    • 2006
  • Optimum analytical conditions for cyclic voltammetry (CV) and square wave (SW) stripping voltammetry were determined using mercury-mixed carbon nanotube paste electrode (PE). The results approached the microgram working ranges of SW: 10.0-80.0 $ugL^{-1}$ and CV: 100-700 $ugL^{-1}$ Cd (II); working conditions of 300-Hz frequency, 100 mV amplitude, 1.6 V accumulation potential, 400 sec accumulation time, and 40 mV increment potential. First, analysis was performed through direct assay of cadmium ions deep into the fishs brain core and plant tissue in real time with a preconcentration time of 400 sec. The relative standard deviation of 10.0 $mgL^{-1}$ Cd (II) observed was 0.064 (n = 12) at optimum conditions. The low detection limit (S/N) was set at 0.6 $ugL^{-1}$ ($5.33{\times}10^{-9}$ M). The methods can be used in direct analysis in vivo or in real-time monitoring of plant tissue.

Cd으로 오염된 토양의 EK 정화시 Humic acid가 미치는 영향

  • 구한모;김정환;한상재;김수삼
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.131-134
    • /
    • 2001
  • This research was carried out to evaluate the effects of humic acid on contaminated kaoline with cadmium when electrokinetic remediation. Electrokinetic remediation test was performed depending on humic acid concentrations(0.005, 0.01, 0.05, 0.083, 0.1, 0.5, 5.0mg/g) in contaminated kaoline with cadmium and time(4, 8, 12days). In the absence of humic acid, Cd at the anode showed the highest concentration while Cd concentrations were lower as the concentration of humic acid increased. The removal of Cd to the anode reservoir was increased with increasing humic acid concentration by electroosmosis or ion migration.

  • PDF

Purification of Carp Serum Metallothionein Induced in Carp with Cadmium and Production of Polyclonal Antibody (카드뮴 유도 잉어 혈액으로부터의 Metallothionein 정제 및 이에 대한 다클론 항체 생산)

  • Ryu, Hyung-Seok;Kang, Ho-Joon;Kim, Seul Ki;Kim, Namsoo;Kim, Woo-Yeon
    • Food Engineering Progress
    • /
    • v.13 no.4
    • /
    • pp.314-319
    • /
    • 2009
  • Metallothioneins (MTs) are low molecular weight, cysteine-rich, and heavy metal binding proteins, which could be induced with heavy metals such as Cd, Hg, Zn and Cu in liver, kidney, and in cultured cells. By using ion exchange chromatography on DE-52, MT was purified from the serum of carp induced with cadmium in order to produce antibody against MT. Polyclonal antibody produced against purified carp MT reacted well with MT in the serum of carp induced with cadmium, whereas control serum did not. This may indicate that the polyclonal antibody against the carp MT could be used for the preparation of biosensors to detect MT in fishes like carp.

Dependence of reaction temperature on the properties of CdS thin films grown by Chemical Bath Deposition (Chemical Bath Deposition으로 성장한 CdS 박막의 반응온도에 대한 특성)

  • Lee, Ga-Yeon;Yu, Hyeon-Min;Lee, Jae-Hyeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.805-808
    • /
    • 2010
  • In this paper, CdS thin films, which were widey used window layer of the CdS/CdTe and the CdS/$CuInSe_2$ heterojunction solar cell, were grown by chemical bath deposition, and effects of temperature of reaction solution on the structural properties were investigated. Cadmium acetate and thiourea were used as cadmium and sulfur source, respectively. And ammonium acetate was used as the buffer solution. The reaction velocity was increased with increasing temerature of reaction solution. For temperature <= $85^{\circ}C$, as increasing temperature of solution, deposition rate of CdS films was increased by ion-by-ion reaction in the substrate surface, and the crystallinity of the films was improved. However, for temperature <= $55^{\circ}C$, deposition rate was decreased resulting from smaller Cd2+ ion, and the grain size was decreased.

  • PDF

Studies on Cd and Removal Ability and Detoxification of Oenanthe stolonifera (미나리 ( Oenanthe stolonifera ) 의 Cd, Zn 제거능과 내성에 관한 연구)

  • Lee Soo;In Sook Lee
    • The Korean Journal of Ecology
    • /
    • v.19 no.6
    • /
    • pp.519-527
    • /
    • 1996
  • To examine the possibility of biomonitoring of heavy metal removal ability and soil, a study was performed to investigate the heavy metal removal ability and metal-binding protein (MBP) as detoxification process using Oenanthe stolonifera. After O. stolonifera was exposed to individuals (cadmium, zinc) and mixture (cadmium+zinc)for 4 days, removal rate of heavy metal and pH in the treatment medium was measured. MBP was assayed by means of ion exchange column chromatography. The exposure to mixture (Cd:76.8%, Zn:75%) rather than individuals (Cd:82.9%, Zn:90.4%) showed a synergism raising the toxic effect. Initial removal rate was different for each heavy metal : in case of exposure to cadmium it was over 60% on day 1, while for zinc it was 75~90% on day 4. Throughout the experimental period, pH value of treatment medium continuously decreased, since cortex in the roots may secret organic acid to adjust and prevent toxicity of metals. The existence or MBP in the 70~80 fraction and the presence of Zn-enzyme pool was ascertained with the column chromatography. This study demonstrated a possibility that heavy utilized as a biomarker of heavy metal pollution.

  • PDF

Differentially Expressed Genes in Marine Medaka Fish (Oryzias javanicus) Exposed to Cadmium

  • Woo, Seon-Ock;Son, Sung-Hee;Park, Hong-Seog;Vulpe, Chris D.;Ryu, Jae-Chun;Yum, Seung-Shic
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.4
    • /
    • pp.293-299
    • /
    • 2008
  • To screen the differentially expressed genes in cadmuim-exposed marine medaka fish (Oryzias javanicus), a candidate marine test fish for ecological toxicity, the differential display polymerase chain reaction (DD-PCR) was carried out, since the genome-wide gene expression data are not available in this fish species yet. A total of 35 clones were isolated from cadmium-exposed fish and their nucleotide sequences were analyzed. The differentially expressed gene candidates were categorized to response to stimulus (3); ion binding (3); DNA binding (1); protein binding (6); carbohydrate binding (1); metabolic process (4); biological regulation (3); cellular process (2); protein synthesis (2); catalytic activity (2); sense of sight (1); immune (1); neurohormone (1); signaling activity (1); electron carrier activity (1) and others (3). For real-time quantitative RT-PCR, we selected catalase, glucose-6-phosphate dehydrogenase, heat shock protein 70, and metallothionein and confirmed that cadmium exposure enhanced induction of these four genes.

Complexation of Cadmium(Ⅱ) with Humic Acids: Effects of pH and Humic Acid Origin

  • Lee, Mee-Hae;Choi, Se-Young;Chung, Kun-Ho;Moon, Hi-Chung
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.6
    • /
    • pp.726-732
    • /
    • 1993
  • A comparative study on cadmium(II) complexation with three well characterized humic acids (SHA: soil humic acid from the Okchun Metamorphic Belt; AqHA: aquatic humic acid from Gorleben underground aquifer, Germany; CoHA: commercially available humic acid from the Aldrich Co.) was carried out in 0.1 M $NaClO_4$ at different solution pH(5.0, 5.5, and 6.0) using the ultrafiltration technique. The maximum binding ability (MBA) of the humic acids for cadmium(II) was observed to vary with their origins and solution pH. The results suggest that 1 : 1 complex predominates within the experimental range, and the conditional stability constants were calculated based on the assumption of cooperative binding, yielding log K values that were quite similar (CoHA: 4.17${\pm}$0.08; AqHA: 4.14${\pm}$0.07; SHA: $4.06{\pm} 0.12\;l\;mol^{-1}$ at pH 6.0) irrespective of humic acid origins or pH. By contrast a nonlinear Schatchard plot was obtained, using the cadmium(II) ion selective electrode speciation analysis method, which indicated that humic acid may have two or more classes of binding sites, with $log\;K_1\;and\;log\;K_2$ of 4.73${\pm}$ 0.08 and $3.31{\pm}0.14\;l\;mol^{-1}$ respectively.

Characteristics of Heavy Metal Biosorption by Pseudomonas cepacia KH410 (Pseudomonas cepacia KH410의 중금속 흡착특성)

  • 박지원;김영희
    • Korean Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.197-203
    • /
    • 2001
  • An ubiquitous bacterium, Pseudomonar cepacia KH410 was isolated from fresh water plant root and identified. Adsorption of heavy metals of lead, cadmium and copper by this strain was investigated. Optimal conditions foradsorption was 1.0 dry g-biomass, at pH 4.0 and temperature of $40^{\circ}C$. Adsorption equilibrium reached max-imum after 120 min in 1000 mg/l metal solutions. The adsorption capacity (K) of lead was 5.6 times higher thancadmium and 4.0 times higher than that of copper. Adsorption of lead was applicable for Langmuir modelwhereas Freundlich model for cadmium and copper, respectively. Adsorption strength (1/n) of heavy metal ionswere in the order of lead>copper>cadmium. Uptake capacity of lead, cadmium and copper by dried cell was83.2,42.0,65.2 mg/g-biomass, respectively. Effective desorption was induced 0.1 M HCI for lead and 0.1 $HNO_3$ for cadmium and copper. Pretreatment to increase ion strength was the most effective with 0.1 M KOH.Uptake by immobilized cell was 77.8,58.5,71.2 mg/g-biomass for lead, cadmium and copper, respectively. Theimmobilized cell was more effective than ion exchange resin on removal of heavy metals in solution containinglight metals.

  • PDF