DOI QR코드

DOI QR Code

Real-time Voltammetric Assay of Cadmium Ions in Plant Tissue and Fish Brain Core

  • Ly, Suw-Young (Biosensor Research Institute, Seoul National University of Technology)
  • Published : 2006.10.20

Abstract

Optimum analytical conditions for cyclic voltammetry (CV) and square wave (SW) stripping voltammetry were determined using mercury-mixed carbon nanotube paste electrode (PE). The results approached the microgram working ranges of SW: 10.0-80.0 $ugL^{-1}$ and CV: 100-700 $ugL^{-1}$ Cd (II); working conditions of 300-Hz frequency, 100 mV amplitude, 1.6 V accumulation potential, 400 sec accumulation time, and 40 mV increment potential. First, analysis was performed through direct assay of cadmium ions deep into the fishs brain core and plant tissue in real time with a preconcentration time of 400 sec. The relative standard deviation of 10.0 $mgL^{-1}$ Cd (II) observed was 0.064 (n = 12) at optimum conditions. The low detection limit (S/N) was set at 0.6 $ugL^{-1}$ ($5.33{\times}10^{-9}$ M). The methods can be used in direct analysis in vivo or in real-time monitoring of plant tissue.

Keywords

References

  1. Arezoo, C.; Mark, A. S.; Lawrence, M. S.; Stephen, C. B.; George, P. B. Rese. Bulle. 2001, 55, 125 https://doi.org/10.1016/S0361-9230(01)00455-5
  2. Mary, G.; Gail, B.; Gary, S.; Patrick, R. Sci. Tol. Enviro. 2005, 1, 523
  3. Susanne, B.; Miroslav, Z.; Carola, P.; Michael, P.; Sabine, B. lnt. J. Mass Spectro. 2005, 242, 135 https://doi.org/10.1016/j.ijms.2004.10.027
  4. Sergeant, M. H. V.; Deves, G.; Guillou, F. Nuc. Ins. Met in Phys. Res. B 2005, 231, 234 https://doi.org/10.1016/j.nimb.2005.01.063
  5. Jan, G.; Beate, H.; Ute, S.; Ursula, V. R.; Ulf, S.; Ulrike, G. J. Neuro Metho. 2005, 142, 251 https://doi.org/10.1016/j.jneumeth.2004.09.001
  6. Ernest, B.; Akrt, M. C.; Dzurov, J.; Jurica, L.; Broekaert, J. A. C. Electro. 1999, 11, 1137 https://doi.org/10.1002/(SICI)1521-4109(199911)11:15<1137::AID-ELAN1137>3.0.CO;2-Z
  7. Shohda, A. E. M.; Mohamed, Z. G.; Atef, T. F.; Mohamed, A. H. J. Bioch. and Mol. Toxi. 2001, 15, 207 https://doi.org/10.1002/jbt.18
  8. Bernd, K. Electro. 2005, 1
  9. Gunnar, N. J. Tra. Ele. Expe. Medicine 2003, 16, 307 https://doi.org/10.1002/jtra.10039
  10. Hardcastle, J. L.; West, C. E.; Compton, R. G. Anal. 2002, 127, 1495 https://doi.org/10.1039/b204886h
  11. Khodari, M. Electroa 1998, 10(15), 1061 https://doi.org/10.1002/(SICI)1521-4109(199810)10:15<1061::AID-ELAN1061>3.0.CO;2-2
  12. Famei, L.; Dandan, Z.; Xiumei, L.; Yuling, W.; Zhili, X. Bio. Chrom. 2004, 18, 866 https://doi.org/10.1002/bmc.440
  13. Ling, X.; Xiumin, S.; Cong, Z.; Koichi, M. Chrai. 2005, 17, 476
  14. Jeffry, B. P.; Mila, L.; Raymond, E. M, I. T. MS of Dioxins/Furans and PCBs 2000, 19, 305
  15. Pawel, L.U.; Carmen, G. R.; Ma, G.; Ma, L. M, J. Sep. Sci. 2005, 28
  16. Markus, J.; Peter, G.; Gerd, U. F.; Joseph, W. Electroa. 2001, 13(1), 34 https://doi.org/10.1002/1521-4109(200101)13:1<34::AID-ELAN34>3.0.CO;2-5
  17. Pompilia, S.; Marisol, V.; Liviu, R. J. Phar. Biome. Analy. 2000, 23, 99 https://doi.org/10.1016/S0731-7085(00)00279-X
  18. Lin, L.; Sompong, T.; Joseph, W.; Yuehe, L.; Omowunmi, A. S.; Suw, Y. L. Ana. Chi. Acta 2005, 535, 9 https://doi.org/10.1016/j.aca.2004.12.003
  19. Suw, Y. L.; Sang, S. S.; Sung, K. K.; Young, S. J.; Chang, H. L. F. Chemi. 2006, 95, 337 https://doi.org/10.1016/j.foodchem.2005.02.029
  20. Francesco, R.; Carla, G. A.; Aziz, A.; Lo, G.; Giuseppe, P.; Danila, M. Electro. 2003, 15, 1204 https://doi.org/10.1002/elan.200390148
  21. Soo, B. K.; Si, X. G. Electro. 2002, 14, 813 https://doi.org/10.1002/1521-4109(200206)14:12<813::AID-ELAN813>3.0.CO;2-T
  22. Suw, Y. L.; Duck, H. K.; Myung, H. K. Talanta 2002, 58, 919 https://doi.org/10.1016/S0039-9140(02)00442-3
  23. Jyh, M. Z.; Hsieh, H. C.; Govindasamy, I. Electro. 1999, 11, 108 https://doi.org/10.1002/(SICI)1521-4109(199902)11:2<108::AID-ELAN108>3.0.CO;2-3
  24. Percio, A. M. F.; Angela, L. R. W.; Margarida, B. R. B.; Adriana, T. S.; Arnaldo, A. C. Tala. 2003, 61, 829 https://doi.org/10.1016/S0039-9140(03)00376-X
  25. Joseph, W.; Samo, B. H.; Bozidar, O. Electro. Comm. 2004, 6, 176 https://doi.org/10.1016/j.elecom.2003.11.010
  26. Bailure, S. S.; Wlodzimierz, K.; Francis, D. S. Electro. 2003, 15, 753 https://doi.org/10.1002/elan.200390094
  27. Eugenii, K.; Itamar, W. Chem. Phy. 2004, 5, 1084
  28. Chengguo, H.; Kangbing, W.; Xuan, D.; Shengshui, H. Tal. 2003, 60, 17 https://doi.org/10.1016/S0039-9140(03)00116-4
  29. Glimaldo, M.; Marcio, F. B.; Marcos, F. S. T.; Eder, T. G. C. Tal. 2003, 59, 1021 https://doi.org/10.1016/S0039-9140(03)00004-3
  30. Samo, B. H.; Ivan, S.; Karel, V.; Bozidar, O. Electro. Act 2005, 51, 706 https://doi.org/10.1016/j.electacta.2005.05.023
  31. Kidane, F.; Bhagwan, S. C. Electro. 2001, 13, 484 https://doi.org/10.1002/1521-4109(200104)13:6<484::AID-ELAN484>3.0.CO;2-M
  32. Randhir, P. D.; Joseph, W. Electro. Commu. 2004, 6, 284 https://doi.org/10.1016/j.elecom.2004.01.003
  33. Joseph, W.; Samo, B. H.; Bozidar, O. Electro. Com. 2004, 6, 176 https://doi.org/10.1016/j.elecom.2003.11.010
  34. Joshua, O.; Philippe, W.; Tebello, N. Electro. 2002, 14, 1165 https://doi.org/10.1002/1521-4109(200209)14:17<1165::AID-ELAN1165>3.0.CO;2-S
  35. Wilson, T. L. S.; Christine, T. G.; Maria, O. O. R.; Nabil, E. M. Electro. 2002, 14, 71 https://doi.org/10.1002/1521-4109(200201)14:1<71::AID-ELAN71>3.0.CO;2-B
  36. Korbut, Q.; Buckova, M.; Tarapcik, P.; Labuda, J.; Grundler, P. J. Ele. L Che. 2001, 506, 143 https://doi.org/10.1016/S0022-0728(01)00494-6
  37. Khodar, M. Electroan. 1998, 10, 1061 https://doi.org/10.1002/(SICI)1521-4109(199810)10:15<1061::AID-ELAN1061>3.0.CO;2-2
  38. Frank, M.; Steven, L. M.; Richard, G. C.; Barry, A. C. Electro. 2000, 12, 267 https://doi.org/10.1002/(SICI)1521-4109(20000301)12:4<267::AID-ELAN267>3.0.CO;2-W
  39. Pompilia, S.; Marisol, V.; Liviu, R. J. Pha. Bio Ana. 2000, 23, 99 https://doi.org/10.1016/S0731-7085(00)00279-X
  40. Eric, F.; Constant, M. G. B. Anal. Chi. Ac. 1999, 385, 273 https://doi.org/10.1016/S0003-2670(98)00582-0
  41. Biji, F. J. C.; Sluyters, M.; Sluyters, J. H. J. Ele. Che. 1997, 435, 137 https://doi.org/10.1016/S0022-0728(97)00313-6

Cited by

  1. Trace Uranium Assay Using Infrared Photo Diode Electrodes vol.43, pp.9, 2010, https://doi.org/10.1080/00032710903502157
  2. Recent Applications of Mercury Electrodes for Monitoring of Pesticides: A Critical Review vol.28, pp.11, 2016, https://doi.org/10.1002/elan.201600239
  3. Human-Urine Diabetes Assay and In Vivo Rat Bladder Assay Using a Fluorine-Doped Carbon Nanotube Catheter Sensor vol.37, pp.10, 2009, https://doi.org/10.1007/s10439-009-9714-1
  4. Effect of dimensions of multi-walled carbon nanotubes on its enrichment efficiency of metal ions from environmental waters vol.604, pp.2, 2006, https://doi.org/10.1016/j.aca.2007.10.009
  5. Simultaneous Diagnostic Assay of Catechol and Caffeine Using an in vivo Implanted Neuro Sensor vol.29, pp.9, 2008, https://doi.org/10.5012/bkcs.2008.29.9.1742
  6. Ex Vivo Assay of Trace Nicotine Using a Voltammetric Modified Biosensor vol.29, pp.1, 2006, https://doi.org/10.12925/jkocs.2012.29.1.5