• Title/Summary/Keyword: cache-hit

Search Result 172, Processing Time 0.022 seconds

Performance Analysis of Cache and Internal Memory of a High Performance DSP for an Optimal Implementation of Motion Picture Encoder (고성능 DSP에서 동영상 인코더의 최적화 구현을 위한 캐쉬 및 내부 메모리 성능 분석)

  • Lim, Se-Hun;Chung, Sun-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.5
    • /
    • pp.72-81
    • /
    • 2008
  • High Performance DSP usually supports cache and internal memory. For an optimal implementation of a multimedia stream application on such a high performance DSP, one needs to utilize the cache and internal memory efficiently. In this paper, we investigate performance analysis of cache, and internal memory configuration and placement necessary to achieve an optimal implementation of multimedia stream applications like motion picture encoder on high performance DSP, TMS320C6000 series, and propose strategies to improve performance for cache and internal memory placement. From the results of analysis and experiments, it is verified that 2-way L2 cache configuration with the remaining memory configured as internal memory shows relatively good performance. Also, it is shown that L1P cache hit rate is enhanced when frequently called routines and routines having caller-callee relationships with them are continuously placed in the internal memory and that L1D cache hit rate is enhanced by the simple change of the data size. The results in the paper are expected to contribute to the optimal implementation of multimedia stream applications on high performance DSPs.

A Video Cache Replacement Scheme based on Local Video Popularity and Video Size for MEC Servers

  • Liu, Pingshan;Liu, Shaoxing;Cai, Zhangjing;Lu, Dianjie;Huang, Guimin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.3043-3067
    • /
    • 2022
  • With the mobile traffic in the network increases exponentially, multi-access edge computing (MEC) develops rapidly. MEC servers are deployed geo-distribution, which serve many mobile terminals locally to improve users' QoE (Quality of Experience). When the cache space of a MEC server is full, how to replace the cached videos is an important problem. The problem is also called the cache replacement problem, which becomes more complex due to the dynamic video popularity and the varied video sizes. Therefore, we proposed a new cache replacement scheme based on local video popularity and video size to solve the cache replacement problem of MEC servers. First, we built a local video popularity model, which is composed of a popularity rise model and a popularity attenuation model. Furthermore, the popularity attenuation model incorporates a frequency-dependent attenuation model and a frequency-independent attenuation model. Second, we formulated a utility based on local video popularity and video size. Moreover, the weights of local video popularity and video size were quantitatively analyzed by using the information entropy. Finally, we conducted extensive simulation experiments based on the proposed scheme and some compared schemes. The simulation results showed that our proposed scheme performs better than the compared schemes in terms of hit rate, average delay, and server load under different network configurations.

A Local Buffer Allocation Scheme for Multimedia Data on Linux (리눅스 상에서 멀티미디어 데이타를 고려한 지역 버퍼 할당 기법)

  • 신동재;박성용;양지훈
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.4
    • /
    • pp.410-419
    • /
    • 2003
  • The buffer cache of general operating systems such as Linux manages file data by using global block replacement policy and read ahead. As a result, multimedia data with a low locality of reference and various consumption rate have low cache hit ratio and consume additional buffers because of read ahead. In this paper we have designed and implemented a new buffer allocation algorithm for multimedia data on Linux. Our approach keeps one read-ahead cache per every opened multimedia file and dynamically changes the read-ahead group size based on the buffer consumption rate of the file. This distributes resources fairly and optimizes the buffer consumption. This paper compares the system performance with that of Linux 2.4.17 in terms of buffer consumption and buffer hit ratio.

BLOCS: Block Correlation Aware Sequential Pattern Mining based Caching Algorithm for Hybrid Storages (BLOCS: 블록 상관관계를 인지하는 시퀀스 패턴 마이닝 기반 하이브리드 스토리지 캐슁 알고리즘)

  • Lee, Seongjin;Won, Youjip
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.7
    • /
    • pp.113-130
    • /
    • 2014
  • In this paper, we propose BLOCS algorithm to find sequence of data that should be saved in cache device of hybrid storage system which uses SSD as a cache device. BLOCS algorithm which uses a sequence pattern mining scheme, creates a set of frequently requested sectors with respect to requested order of sectors. To compare the performance of the proposed scheme, we introduce Distance (DIST) based scheme, Request Frequency (FREQ) based scheme, and Frequency times Size (F-S) based scheme. We measure the hit ratio and I/O latency of different caching schemes using hybrid storage caching simulator. We acquired booting workload along with ten scenarios of launching applications and use the workloads as input to the cache simulator. After experiment with booting workload, we find that BLOCS scheme gives hit ratio of 61% which is about 15% higher than the least performing DIST scheme.

Acceleration of LU-SGS Code on Latest Microprocessors Considering the Increase of Level 2 Cache Hit-Rate (최신 마이크로프로세서에서 2차 캐쉬 적중률 증가를 고려한 LU-SGS 코드의 가속)

  • Choi, J.Y.;Oh, Se-Jong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.68-80
    • /
    • 2002
  • An approach for composing a performance optimized computational code is suggested for latest microprocessors. The concept of the code optimization, called here as localization, is maximizing the utilization of the second level cache that is common to all the latest computer system, and minimizing the access to system main memory. In this study, the localized optimization of LU-SGS (Lower-Upper Symmetric Gauss-Seidel) code for the solution of fluid dynamic equations was carried out in three different levels and tested for several different microprocessor architectures most widely used in these days. The test results of localized optimization showed a remarkable performance gain up to 7.35 times faster solution, depending on the system, than the baseline algorithm for producing exactly the same solution on the same computer system.

An Energy-Delay Efficient System with Adaptive Victim Caches (선택적 희생 캐쉬를 이용한 저전력 고성능 시스템 설계 방안)

  • Kim Cheol Hong;Shim Sunghoon;Jhon Chu Shik;Jhang Seong Tae
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.11_12
    • /
    • pp.663-674
    • /
    • 2005
  • We propose a system aimed at achieving high energy-delay efficiency by using adaptive victim caches. Particularly, we investigate methods to improve the hit rates in the first level of memory hierarchy, which reduces the number of accesses to mort power consuming memory structures such as L2 cache. Victim cache is a memory element for reducing conflict misses in a direct-mapped L1 cache. We present two techniques to fill the victim cache with the blocks that have higher probability to be re-reqeusted by processor. Hit-based victim cache ks tilled with the blocks which were referenced frequently by processor. Replacement-based victim cache is filled with the blocks which were evicted from the sets where block replacements had happened frequently According to our simulations, replacement-based victim cache scheme outperforms the conventional victim cache scheme about $2\%$ on average and refutes the power consumption by up to $8\%$.

Wireless Caching Algorithm Based on User's Context in Smallcell Environments (소형셀 환경에서 사용자 컨텍스트 기반 무선 캐시 알고리즘)

  • Jung, Hyun Ki;Jung, Soyi;Lee, Dong Hak;Lee, Seung Que;Kim, Jae-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.7
    • /
    • pp.789-798
    • /
    • 2016
  • In this paper, we propose a cache algorithm based on user's context for enterprise/urban smallcell environments. The smallcell caching method is to store mobile users' data traffic at a storage which is equipped in smallcell base station and it has an effect of reducing core networks traffic volume. In our algorithm, contrary to existing smallcell cache algorithms, the cache storage is equipped in a edge server by using a concept of the Mobile Edge Computing. In order to reflect user's characteristics, the edge server classifies users into several groups based on user's context. Also the edge server changes the storage size and the cache replacement frequency of each group to improve the cache efficiency. As the result of performance evaluation, the proposed algorithm can improve the cache hit ratio by about 11% and cache efficiency by about 5.5% compared to the existing cache algorithm.

Design of an Asynchronous Data Cache with FIFO Buffer for Write Back Mode (Write Back 모드용 FIFO 버퍼 기능을 갖는 비동기식 데이터 캐시)

  • Park, Jong-Min;Kim, Seok-Man;Oh, Myeong-Hoon;Cho, Kyoung-Rok
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.6
    • /
    • pp.72-79
    • /
    • 2010
  • In this paper, we propose the data cache architecture with a write buffer for a 32bit asynchronous embedded processor. The data cache consists of CAM and data memory. It accelerates data up lood cycle between the processor and the main memory that improves processor performance. The proposed data cache has 8 KB cache memory. The cache uses the 4-way set associative mapping with line size of 4 words (16 bytes) and pseudo LRU replacement algorithm for data replacement in the memory. Dirty register and write buffer is used for write policy of the cache. The designed data cache is synthesized to a gate level design using $0.13-{\mu}m$ process. Its average hit rate is 94%. And the system performance has been improved by 46.53%. The proposed data cache with write buffer is very suitable for a 32-bit asynchronous processor.

Neighbor Cooperation Based In-Network Caching for Content-Centric Networking

  • Luo, Xi;An, Ying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2398-2415
    • /
    • 2017
  • Content-Centric Networking (CCN) is a new Internet architecture with routing and caching centered on contents. Through its receiver-driven and connectionless communication model, CCN natively supports the seamless mobility of nodes and scalable content acquisition. In-network caching is one of the core technologies in CCN, and the research of efficient caching scheme becomes increasingly attractive. To address the problem of unbalanced cache load distribution in some existing caching strategies, this paper presents a neighbor cooperation based in-network caching scheme. In this scheme, the node with the highest betweenness centrality in the content delivery path is selected as the central caching node and the area of its ego network is selected as the caching area. When the caching node has no sufficient resource, part of its cached contents will be picked out and transferred to the appropriate neighbor by comprehensively considering the factors, such as available node cache, cache replacement rate and link stability between nodes. Simulation results show that our scheme can effectively enhance the utilization of cache resources and improve cache hit rate and average access cost.

A LFU based on Real-time Producer Popularity in Concent Centric Networks (CCN에서 실시간 생성자 인기도 기반의 LFU 정책)

  • Choi, Jong-Hyun;Kwon, Tea-Wook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1113-1120
    • /
    • 2021
  • Content Central Network (CCN) appeared to improve network efficiency by transforming IP-based network into content name-based network structures. Each router performs caching mechanism to improve network efficiency in the CCN. And the cache replacement policy applied to the CCN router is an important factor that determines the overall performance of the CCN. Therefore various studies has been done relating to cache replacement policy of the CCN. In this paper, we proposed a cache replacement policy that improves the limitations of the LFU policy. The proposal algorithm applies real-time producer popularity-based variables. And through experiments, we proved that the proposed policy shows a better cache hit ratio than existing policies.