
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 5, May. 2017 2398
Copyright ⓒ2017 KSII

Neighbor Cooperation Based In-Network
Caching for Content-Centric Networking

Xi Luo1, 2 and Ying An1

1 Institute of Information Security and Big Data, Central South University
Changsha, China

[e-mail: anying@csu.edu.cn]
2 Department of Information Technology, Hunan Police Academy

Changsha, China
[e-mail: hnluoxi@163.com]

*Corresponding author: Ying An

Received October 19, 2016; revised January 25, 2017; accepted March 11, 2017;
published May 31, 2017

Abstract

Content-Centric Networking (CCN) is a new Internet architecture with routing and caching
centered on contents. Through its receiver-driven and connectionless communication model,
CCN natively supports the seamless mobility of nodes and scalable content acquisition.
In-network caching is one of the core technologies in CCN, and the research of efficient
caching scheme becomes increasingly attractive. To address the problem of unbalanced cache
load distribution in some existing caching strategies, this paper presents a neighbor
cooperation based in-network caching scheme. In this scheme, the node with the highest
betweenness centrality in the content delivery path is selected as the central caching node and
the area of its ego network is selected as the caching area. When the caching node has no
sufficient resource, part of its cached contents will be picked out and transferred to the
appropriate neighbor by comprehensively considering the factors, such as available node
cache, cache replacement rate and link stability between nodes. Simulation results show that
our scheme can effectively enhance the utilization of cache resources and improve cache hit
rate and average access cost.

Keywords: Content-Centric Networking; in-network caching; load balance; neighbor
cooperation

This research was supported by the National Natural Science Foundation of China under Grant Nos. 61402541, and
the Scientific Research Fund of Hunan Provincial Education Department under Grant No. 15B127.

https://doi.org/10.3837/tiis.2017.05.005 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 5, May 2017 2399

1. Introduction

W ith the rapid development of Internet technology and the popularity of its application, the
network requirements have changed from computing resource sharing into the access to mass
information. Content service has gradually become the main body of network service. To
better cope with the Internet usage shift from sender-driven end-to-end communication
paradigm to receiver-driven content retrieval paradigm, some content-oriented network
architectures [1-3] are proposed in recent years. As one representative of the novel
architectures, Content-Centric Networking (CCN) [4] has attracted wide research interests in
the networking community.

In CCN, users are only interested in the actual content itself rather than the hosting server
location, and each content object is uniquely identified by its name. There are two packet types
in CCN communications, Interest and Data. The user requests content by broadcasting its
interest with the corresponding name identifier. If the content which satisfies the interest can
be found in the cache of some node, the event is called a cache hit and the node is called a
cache hitting node. Then the cache hitting node will send the corresponding data packet back
to the requested node following the reverse path of the interest. In order to alleviate the
pressure that rapid traffic growth imposes on network bandwidth and enhance the network
resource utilization, in-network caching plays a vital role in the CCN architecture and has
received tremendous attention from academia recently. CCN provides a ubiquitous in-network
caching and the network acts as not only a content transmission carrier but also a content
storage carrier. Thus, when a user requests some content, any intermediate node which caches
the corresponding content can give a rapid response, without the need to find the original
content servers. At present, LCE (Leave Copy Everywhere) [5] is adopted by CCN as the
default caching strategy which replicates the content at each node along the downloading path.
However, this strategy introduces excessive caching redundancy and decreases the diversity of
the whole system’s cached contents. Subsequently, a series of selective caching algorithms are
proposed [6-9]. These algorithms pick out partial nodes from the network as caching nodes
according to certain criteria to reduce caching redundancy and achieve high cache hit rate.
Nevertheless, there is a marked disadvantage that a mass of contents are concentrated on a few
of important nodes. That is to say, the cache contents are extremely unevenly distributed. It
causes some nodes suffer over quick resource consumption and frequent cache replacement,
however, the resource of the other nodes are underutilized. As a result, the overall cache
performance is degraded.

To solve the above-mentioned problems, the contribution of this paper is as follows.
(1) We illustrate that some existing caching schemes may yield significant cache load

imbalance through simulation, and analyze its effect on cache performance.
(2) We propose a Neighbor Cooperation Based In-network Caching (NCBIC) scheme for

CCN. In this scheme, the node with the highest betweenness centrality in the content delivery
path is selected as the central caching node and the area of its ego network is selected as the
caching area. When the central caching node has no sufficient resources, it will transfer part of
its cached contents to its neighbor. The aim is to distribute cache load over the whole caching
area and relieve cache pressure on the central caching node.

(3) We design a migrated node selection algorithm which selects the appropriate neighbor
to cache the migrated content according to the available cache space, the cache replacement
rate and the link stability.

2400 Luo et al.: Neighbor Cooperation Based In-Network Caching for Content-Centric Networking

(4) We evaluate our scheme through extensive simulation experiments in terms of a wide
range of performance metrics. Results demonstrate that it achieves significant performance
gains.

The rest of this paper is organized as follows. Section 2 reviews the previous work on
caching technology in CCN and introduces our motivation. Section 3 presents a neighbor
cooperation based in-network caching scheme. In Section 4, we show the simulation results.
Finally, we conclude the paper in Section 5.

2. Related Work
Caching service is one of the important means of efficient content retrieval in CCN, so cache
performance optimization becomes a focused issue on CCN caching technology. Generally, it
encompasses two major research topics: cache decision strategies and cache replacement
strategies. Cache replacement strategies have been widely investigated in the early studies on
traditional web caching. Many replacement algorithms have been proposed [10], including
Least Recently Used (LRU) [11] which is the most common algorithm in CCN currently and a
lot of improved algorithms [12,13]. Due to the demand for line-speed operation of caches in
CCN, however, the simplicity of algorithm is more important for cache replacement strategies.
In contrast, cache decision strategies become a focus in CCN caching and have attracted
considerable scholarly attention. A series of improved cache decision algorithms has been
successively proposed after LCE. For example, [14,15] proposed two distributed random
cache placement strategies, in which the caching nodes are randomly selected from the
immediate nodes along the delivery path. [16] proposed a caching scheme which combined the
random cache decision and least recently used (LRU) replacement policy in the content store
of CCN. In this scheme, a uniformly distributed random number rand in the range [0, 1] is
generated and compared with the configured caching probability pc. If pc is greater than rand,
the content is cached in the store and forwarded to the outbound interfaces; otherwise, the
content will be just forwarded. Random cache decision strategies can effectively decrease
caching redundancy but without considering some important properties such as the
distribution of request and the network topology, therefore, they cannot guarantee the overall
cache performance of the whole system. Some researchers proposed that the popularity of
content can be adopted as a key property for the design of cache decision strategies. Kideok et
al. [17] proposed a WAVE policy which adjusts the number of data chunks cached at each
node based on their popularity. The upstream node recommends the number of chunks to be
cached at its downstream node by setting a cache indication mark in data packet, and the
number is exponentially increased as the request count increases. A content popularity and
node level matched based probability caching strategy (MPC) is proposed in [18]. In MPC,
three parameters including hop account to the requester, betweenness centrality and cache
space replacement rate are jointly introduced to evaluate the level of nodes according to the
caching property. Then, a probabilistic method to match content popularity to its
corresponding node level is adopted to maximize the cache utilization and to improve the
content diversity in networks simultaneously. Huang et al. [19] presented a new caching
strategy based on content popularity and hops that can save by caching. Interest packets collect
useful information on their way to the server and give it to data packets. Finally, every node
makes its own decision by considering node location importance and content’s popularity
brought by data packets. Ming et al. [20] advanced a concept of content age and designed an
age-based cooperative caching scheme. In this scheme, each content has an ‘age’ field which
is dynamically adjusted at different nodes according to the content location and popularity. It

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 5, May 2017 2401

aims to decrease publisher load and network delay by spreading popular contents to the
network edge. These caching strategies try to push popular contents to the end users so as to
improve cache performance. However, replicating contents to the network edge may take a
relatively long time and they also fail to reduce caching redundancy from perspective of the
whole network. Consequently the effectiveness of these strategies is seriously limited.

In view of the impact of node importance on cache performance, various caching strategies
have been explored. For example, Chai et al. [21] presented a centrality based selective
caching algorithm—Betw. In this algorithm, betweenness centrality is adopted as a metric of
node importance and contents are only cached at the nodes having the highest betweenness
centrality along the delivery path. In [22], a novel caching strategy based on nodes’
importance to social communities in CCN is proposed. It designed a NodeRank method,
which measure the importance of nodes by considering nodes’ social attributes. Then the
content copies will be placed in the key nodes with high importance scores. These solutions try
to shorten the content access delay and achieve high cache hit rate. However, a glaring
deficiency of them is that the cached contents are concentrated on a small number of
high-centrality nodes, while the resources of low-centrality nodes are underutilized. To
illustrate this point, we present a motivating example of Betw as follow. We simulate a
50-node network and each node has a 10MB cache. There are 10000 contents and the content
size is 1MB. Given the arrivals of user requests follow the Poisson distribution with parameter
λ=100 and the user requests follow the Zipf distribution with parameter α=0.75. We define the
cumulative number of cached contents as the sum of the contents which are presently cached
in network and the contents have been replaced. It will be used as a metric to reveal the
distribution of cache load under Betw. As shown in Fig. 1, the cumulative number of cached
contents of nodes 4, 9, 17, 28 and 34 are much more than those of the others. It implies that
most of the cache load is applied to a small part of nodes. The seriously uneven load
distribution will incur excessive replacements and a decrease of cache hits. Consequently, it
badly weakens the positive effects of content caching on providing fast response to subsequent
requests.

10 20 30 40 50
0

1000

2000

3000

Th
e

cu
m

ul
at

ive
 n

um
be

r o
f c

ac
he

d
co

nt
en

t

Node No.

 Betw

Fig. 1. Cache load distribution of Betw

Some improved schemes have been proposed to solve the above-mentioned issues[23-26].

For instance, in [23], a weight-based probabilistic in-network caching scheme ProbCache is
presented. In this scheme, the requested content is cached at each node with a probability. The
probability is inversely proportional to the distance from the requester and the current node.
The goal of ProbCache is to quickly push the content to the network edge and meanwhile
improve cache load balance through the probabilistic caching mode. Due to without

2402 Luo et al.: Neighbor Cooperation Based In-Network Caching for Content-Centric Networking

considering the popularity of content, however, there exists fierce resource competitions
among different contents at the network edge nodes. As a result, its actual performance is
impaired to some extent. In [24], a prioritized probabilistic caching scheme (PPC) is proposed
to selectively cache more important data more than the others by using heterogeneous caching
probabilities. In this algorithm, each node evaluates the priority of data according to the
influence of the data to the quality of content reconstructed from the data. And then, the
caching probability can be calculated by considering the popularity and priority of data.
However, it makes caching decision simply from the perspective of content, the characteristics
of node such as node importance and cache state are not considered. For this reason, its
effectiveness is also limited.

In our solution, node centrality is still considered in the selection of caching node. In order
to enhance the cache load balance and improve cache hit performance, the node with high
centrality is selected to be a central caching node and the area of its ego network is defined as
its caching area. Once the cache space of some central caching node is inadequate, the lowest
popularity content cached in it will be transferred to one of its neighbor which is selected from
its caching area. By doing so, we not only guarantee that the contents are cached on the
relatively important nodes as much as possible, but also make full use of the neighbor nodes’
resources to optimize cache load balancing. It effectively reduces the cache replacement rate,
meanwhile brings a marked improvement in cache hit rate and resource utilization.

3. Neighbor Cooperation Based In-network Caching
It is pointed out in [21] that the relatively important nodes usually have much stronger
connection capability than the others, and they have more opportunities to receive the requests
from the other nodes. Therefore, it can obtain higher cache hits and faster response time by
caching the contents at the important nodes. We agree in the vital effects of node importance
on cache performance, and choose the ego network betweenness centrality to evaluate the
node importance as well. Unlike Betw, in our scheme, the contents are not always cached at
the high betweenness nodes but can be transferred to the other nodes when the resource of the
current caching node is insufficient. The goal is to utilize the caching capability of the whole
network to achieve cache load balance, and consequently obtain an improvement in cache
performance. The work principle of NCBIC is depicted as below.

In NCBIC, each routing node has three main data structures: Forwarding Information Base
(FIB), Pending Interest Table (PIT) and Content Store (CS). The FIB records the next-hop
forwarding interface toward the potential source of matching content. The PIT is used to store
the sources of unsatisfied Interests and each PIT entry includes the content name carried in the
interest packet, together with its arrival interface(s). According to the arrival interface, the
requested content can be sent back to the user along the reverse path of the corresponding
interest packet. When multiple interest packets for the same content are received in succession,
only the first interest packet will be forwarded. For the other ones, the node simply records
their arrival interfaces in the matching PIT entry and then discards them. Unlike the original
design in CCN, we divide the CS into two parts: Common Content Store (CCS) and Content
Index Store (CIS). The CCS occupies most part of the cache space and is used to store the full
content packets. While only a small part of cache space is assigned to CIS for storing the
indexes of contents. Here the index indicates the caching node of certain content and its
corresponding access path.

The caching decision procedure of NCBIC includes three parts: 1) cache placement; 2)
content migration; 3) cache replacement and update.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 5, May 2017 2403

In cache placement process, when users send the interest packet to request the content that
they want, the nodes on the propagation path of the interest calculate their own ego
betweenness values. The interest packet records the highest ego betweenness value among all
the intermediate nodes it traverses. The value will be copied onto the data packets when the
requested content is found at the original content server or some caching node. On the way to
the user, each node matches its own ego betweenness value against the attached one. If the two
values match, the current node will be selected as a central caching node, named Caching
Center (CC). Meanwhile the ego network of the CC is chosen as a Caching Area (CA). Once a
node is chosen as the CC to cache some content, the content is stored in its CCS if it has
enough available cache space.

When the occupation ratio of CCS reaches to a critical value, the content migration process
will be started. In this process, the CC will filter the cached contents in its CCS to pick a
content out and transfer it to the appropriate neighbor node. Meanwhile the CC also creates an
index entry in its CIS to record the new cached location information of the content. In this
paper, the content transferred away from the CC is called Migrated Content, the node which is
selected to accept the migration content is called Migrated Node, and the index information in
the CIS is called Migrated Content Index. The content migration process consists of two
important algorithms. One is the migrated node selection algorithm, in which the migrated
node is chosen from the neighbors of the CC according to cache replacement rate and link
stability. Another is the migrated content selection algorithm which is based on the popularity
of content. The detailed description of the two algorithms will be depicted in Section 3.1 and
3.2, respectively. The migrated content index contains the migrated content’s name, the ID of
the corresponding migrated node, the outgoing interface for the migrated node and so on.
Based on the content name, once the migrated content index entry which matches some
interest is found in the CIS, the CC will forward the interest packet to the specified migrated
node through the outgoing interface recorded in the index entry so as to achieve a cache hit.

Finally, when the node has no cache space, the cache replacement and update process will
be implemented. In our scheme, the objects to be replaced or updated may involve content
packet and migrated content index. In Section 3.3, the handling process will be given in detail.

The communication process of NCBIC mainly includes the following steps:
(1) When an interest packet is arrival, a longest-match lookup is performed on CCS firstly

according to the content name. If a matching data packet is found, it will be transmitted out the
arrival interface as a response to the interest packet. Otherwise, the node will check its CIS.

(2) If an exact-match CIS entry is found, it means that the desired data packet has been
transferred to some migrated node. Then the interest packet will be sent to the migrated node
according to the migrated content index. The migrated node will find and return the requested
data packet，and then the data packet will be sent back to the requested node according to the
corresponding PIT entry.

(3) If there is no match for the interest packet in CIS, then the node will check its PIT. If
there is a matching PIT entry the interest packet’s arrival interface will be added to the PIT
entry. Otherwise, the interest packet will be forwarded to the next-hop node according to its
FIB, and a new PIT entry will be created from the interest packet and its arrival interface.

Similarly, when a data packet is arrival, the node first checks its CCS and CIS respectively.
If a match is found then the data packet will be discarded. Otherwise, if there is a matching PIT
entry then the node will send the data packet back to its original requesters according to the
interfaces recorded in the PIT entry. Meanwhile, it will make a decision whether to cache this
data packet based on the caching strategy. If no match is found in PIT either, the data packet
will be discarded directly.

2404 Luo et al.: Neighbor Cooperation Based In-Network Caching for Content-Centric Networking

The pseudo-code is shown in Table 1.

Table 1. Algorithm 1: CCMCM Communication Process
Request for content ci arrives
1： IF ci is found in CCS THEN
2： send back ci;
3： ELSE check CIS;
4： IF an exact-match CIS entry is found THEN
5： send the request to the migrated node according to the CIS entry;
6： ELSE check PIT;
7： IF a matching PIT entry is found THEN
8： add the request’s arrival interface into the PIT entry;
9： ELSE
10： forward the request to the next-hop according to the FIB;
11： create a new PIT entry about the request;
12： ENDIF
13： ENDIF
14：ENDIF
Content ci arrives
CB: the max betweenness of nodes on the ci’s delivery path
CB(v): the betweenness of the current node v
1： check CCS and CIS;
2： IF a match entry is found THEN
3： discard ci;
4： ELSE check PIT;
5： IF a matching PIT entry is found THEN
6： IF CB(v)==CB THEN
7： choose node v to be caching center
8： IF freeCache(v) >=size(ci) THEN
9： cache ci;
10： ELSE
11： select a neighbor node as migration node Nt;
12： select a cached content as migration content Mt;
13： migrate Mt to Nt and creat a migration index of Mt on node v;
14： ENDIF
15： ELSE
16： send back ci to the requesters according to the interfaces recorded in the PIT entry;
17： ENDIF
17： ELSE
18： discard ci;
19： ENDIF
20：ENDIF

3.1 Migrated node selection
One of the major purpose of content migration is to use the caching capability of neighbors to
extend the time that the content is cached in network, avoid the content dropping caused by

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 5, May 2017 2405

cache space constrains and improve cache performance as much as possible. In order to
achieve the aim, one of the vital issues is to select the appropriate migrated nodes and
guarantee the availability of migrated content when a content migration occurs. Two factors
are considered in our design of migrated node selection. One is cache state, namely only the
node has enough cache space and can keep the migrated content in cache for a relatively long
time, will be selected as a migrated node. Another is the connection stability, that is to say, the
connection between the migrated node and the CC should have sufficient stability so as to
reduce the unavailability of migrated contents due to link interruption. Thus, there is a high
probability of getting a cache hit and retrieving the desired content from the migrated node
according to the migrated content index.

Considering that the caches of most nodes are approaching saturation when the network
reaches a stable state, the available cache size is not a good indicator to accurately reflect the
difference of cache state among nodes. Thus, we introduce the concept of cache replacement
rate, denoted by Rep(v), which is defined as the ratio of the replaced contents’ size to the total
cache capacity of node in a sampling cycle. The calculation of Rep(v) is given as Eq.(1).

 1
()

()
()

n
ii

S M
Rep v

C v
== ∑ (1)

where S(Mi) is the size of the replaced content Mi in node v, n is the number of the replaced
content in unit time, and C(v) is the total cache capacity of node v. Owing to over-quick
content replacement may result in cache service unavailability, the contents should be
transferred to the nodes with lower cache replacement rate.

Meanwhile, we define the link stability between the CC and any of its neighbors v as the
ratio of the link duration to a sampling cycle, denoted by Stab(v). It can be calculated as Eq.
(2).

Stab(v) = tc / Tsamp (2)

where tc is the link duration and Tsamp is the sampling time. The link between node pairs will
disrupt due to node mobility or shutdown. It may cause the cache location information of
partial migrated contents in the CC invalid. And then, this part of migrated contents will be
inaccessible. In order to promote the availability of migrated content, the nodes that have the
higher link stability to the CC should be selected in priority.

According to the basic considerations mentioned above, a weight factor γ(v) is designed as a
criterion for migrated node selection. It increases proportionately with the link stability but
inversely with the cache replacement rate. It is calculated as Eq. (3).

γ(v)= Stab(v) / Rep(v) (3)

When the network is under light load, the cache replacement rates of some nodes may equal
to zero due to the available cache space is sufficient or no new content arrives. In this case, we
use cache occupancy rate, Occ(v), instead of Rep(v) to calculate the weight factor γ(v).
Therefore, γ(v) should be represented in Eq. (4).

() , () 0
()

()
() , () 0
()

Stab v Rep v
Rep v

v
Stab v Rep v
Occ v

γ

 >= 
 =


 (4)

2406 Luo et al.: Neighbor Cooperation Based In-Network Caching for Content-Centric Networking

When the contents need to be migrated, the CC will calculate the weight factor for all its
neighbors. Then the node with the maximum weight factor will be selected as the migrated
node.

3.2 Migrated content selection
For the purpose of achieving effective neighborhood cooperative caching, not only the
migrated nodes but also the migrated contents should be properly chosen. On the one hand, the
migrated contents can be accessed in a short distance (up to 2 hops) between node pairs in a
CA. Hence, the redundant caching for a same content in a CA should be avoided as much as
possible so as to improve the cache utilization. On the other hand, the more popular the content
is, it means that the greater the need of users for it. So caching the contents with higher
popularity on the CC is beneficial to improving cache performance. That is to say, the CC
should keep the higher popularity contents in its own cache, and move the lower popularity
contents to the other nodes when its cache occupancy rate beyond some threshold. The
detailed process is described as follows.

(1) Firstly, each node sorts all the contents cached in its CCS in ascending order according
to the content popularity.

(2) Then, the CC exchanges the cache contents index with its neighbors for redundancy
detection. If the redundant contents are detected between the CC and its neighbors, then the
redundancy elimination process will be performed. Specifically, if the redundant contents are
less popular (e.g., the popularities are ranked in the bottom 50% among all the contents cached
on the CC), they will be removed from the CC directly. Otherwise, they will be discarded by
the neighbor nodes. If the redundant contents exist among the neighbor nodes, they will be
removed from the node whose cache replacement rate is higher.

(3) We assume that Mc and Mt represent the content with the lowest popularity in the CC
and the current migrated node, respectively. Their popularities are represented as min

cP and

min
tP . If min

cP is not less than min
tP , the CC will choose Mc as the migrated content, and move it

to the migrated node to replace Mt. Otherwise, the CC will delete Mc directly.

3.3 Update and Replacement of Migrated Content Index
In NCBIC, the data packets received by nodes can be divided into two types. One is generated
from the normal data transmission which is controlled by the content distribution mechanism,
and we call this type of packets the normal content packets. Another is the migrated content
packets, which is derived from the content migration that triggered by our cache decision
mechanism. In order to distinguish the two type of content packets, a flag bit, Ft, is added in the
header of each data packet. The initial value of Ft is set to 0, which means that the packet is a
normal content packet. While if it is a migrated content packet, the value of Ft will be set to 1.
For the normal content packets, the lower popularity contents are replaced in priority when the
available cache space is insufficient. For the migrated content packets, however, the update
and replacement of the migrated content index also should be considered. Therefore, it will be
handled according to different circumstances as follows.

Case 1: the connection between the migrated node Nt and the CC Nc will be broken due to
movement or shutdown of Nt.

1) Nt will inform Nc all the migrated contents stored in its cache by sending a cache
replacement notification (CRN) which contains the names of all the migrated contents in its
cache.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 5, May 2017 2407

2) According to the CRN, Nc combines all its cached contents and the migrated contents
cached at Nt as the pending content collection, and sorts the contents in descending order based
on popularity.

3) Then, Nc preferentially chooses the high popularity contents to cache according to its
available cache space, and the remaining low popularity contents which its cache cannot
contain will be discarded. This means that the migrated contents with higher popularity will be
retrieved to replace the lower popularity ones cached at Nc, thereby the popular contents can
obtain cache service in priority.

4) When the migrated content is retrieved, its migration flag Ft will be set to 0 and the
corresponding migrated content index will be also removed from Nc’s CIS.

5) If Nc’s cache is full and the popularity of the migrated content is lower than that of any
content cached at Nc, the corresponding migrated content indexes will be deleted.

Case 2: due to scarcity of Nt’s cache, some migrated content Mi with the lowest popularity
need be replaced according to the cache replacement algorithm.

1) Nt sends Nc a CRN which contains the information of Mi.
2) If Nc’s cache space is sufficient, the migrated contents will be retrieved immediately. And

meanwhile, the same operation as step 4) in Case 1 will be done. Otherwise, Nc will compare
the popularity of Mi and each content in its cache.

3) If the popularity of Mi is higher than that of any content cached at Nc, the lowest
popularity content will be replaced by Mi. And then Nc reset the migration flag Ft of Mi to zero
and remove the index information of Mi from its CIS. Otherwise, Mi will be replaced by Nt and
its index information will be deleted from Nc’s CIS.

Case 3: the available space of Nc’s CIS is insufficient.
1) The migrated content indexes are also replaced according to the priority of content

popularity. That is to say, the lower the popularity of the migrated content is, the higher the
replacement priority of the corresponding index is.

2) Meanwhile, the migration flag bit Ft will be reset to zero by the migrated node.

4. Performance Evaluations

4.1 Experimental Setup
In order to demonstrate the advantages of our scheme, we compare NCBIC with three
representative schemes, namely, LCE (in which caching nodes on the delivery path cache all
passing contents), Betw (which only chooses the nodes having the highest betweenness
centrality along the delivery path as the caching nodes) and PPC (which selectively caches
more important content by using caching probabilities according to content popularity and
priority). The simulations are performed on the ndnSIM [27], a NS-3 based simulator which is
specially designed for NDN implementation. We use the Locality model of GT-ITM to
generate a flat random topology which consists of 50 nodes. The network topological diagram
is shown in Fig. 2. In our simulations, we assume that the content popularity follows a Zipf
distribution with parameter α and each user generates content requests according to a Poisson
process of intensity 10 requests per second. According to [24], the popularity and priority
coefficients of PPC are set to 0.9 and 0.1, respectively. By default, the content size is generated
using a uniform distribution with values in the range [0.1, 1.9] MB, and the size of each
migrated content index is 1KB. In this paper, user requests are forwarded by flooding and
LRU is adopted as the cache replacement policy by default. The other experimental
parameters are set as given in Table 2 except special declaration.

2408 Luo et al.: Neighbor Cooperation Based In-Network Caching for Content-Centric Networking

Fig. 2. Simulation topological diagram

Table 2. Parameter settings

Main parameters Default value Varying range
Content number 2000 100~3000

Content size（MB） 1 0.1~1.9
Request arrival rate（req/sec） 10

Cache size（MB） 10 2~100
Zipf parameter α 0.7 0.1~1

The performances of the four schemes are evaluated with different cache sizes, different

content numbers and different values of Zipf parameter α, respectively. The following three
metrics are used in our performance evaluation:

1) Cache Hit Rate
It is defined as the probability that a request is responded by the caching nodes instead of the

original content servers.
2) Average Access Cost
It is defined as the average hop count taken by user interest packets to meet the satisfied

content objects.
3) Cache Load Distribution
The difference among different caching decision policies in caching node selection directly

impacts the distribution of cache load. To a certain extent, the equilibrium of cache load
distribution indicates the network resource utilization. Therefore, we use the cumulative total
of cached contents per node (i.e., the times the node is selected as the caching node) to evaluate
the effect of different caching schemes on cache load distribution.

4.2 Simulation Results

In order to clearly reflect the performance difference among the four caching schemes
mentioned above, we first investigate the effect of network resources through varying cache
size and content number. Since the user access patterns differ greatly from the applications,
and different user access patterns often have different values of Zipf parameter α. Thus, we
then change the value of α to observe the performance of the four schemes in different
applications. Finally, the equilibrium of cache load distribution in different caching schemes is
discussed. Simulation results are detailed as follow.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 5, May 2017 2409

4.2.1 Cache hit rate
In this subsection, we first compare the cache hit rate with varying network parameters. As
shown in Fig. 3(a), the cache hit rate of each scheme increases with the increasing of cache
size. This is because the increasing cache space can make nodes keep the cached contents
much longer, thus the chance for cache hits increases accordingly. Due to the blindness and
radicalness, LCE brings about a large amount of cache replacement and redundancy.
Consequently it obtains the least cache hits among the four schemes. Betw optimizes the
selection of caching node based on the betweenness centrality, so its cache hit rate is slightly
higher than that of LCE. In PPC scheme, each node caches the contents with different
probabilities which are dynamically computed according to the popularity and priority. The
optimized random caching scheme takes full consideration of content importance and avoids
the overconcentration of cache load in some extent. So it obtains the second-best performance.
NCBIC not only takes into account node importance in cache decision, but also utilizes the
cache resources of neighbor nodes to achieve effective content migration. It relieves the cache
pressure on high-centrality nodes and reduces the cache replacement in network. Therefore,
NCBIC achieves the best performance on cache hit rate. As can be seen from Fig. 3(a), when
the cache size of each node is 10MB, the cache hit rate of NCBIC reaches 22.7%, which is
about 64.5%, 26.8% and 17.6% higher than that of LCE, Betw and PPC, respectively.

Fig. 3(b) illustrates the impact of content number on cache hit rate. When the cache size of
node remains fixed, cache resources become much scarcer as content number increases. So it
can be seen that the cache hit rate of each scheme has a remarkable downtrend with the
increase of content number, however, the performance of NCBIC is always superior to the
others. This is mainly because NCBIC controls cache redundancy by selecting only one
caching node in the delivery path of the content, simultaneously it makes full use of the
resource of neighbor nodes to reduce cache pressure and prolong the time that the content
cached in network. Due to the redundant caching, the performance of LCE is badly affected.
When there are only 100 different content objects in the network, LCE’s cache hit rate is about
34.8%, but by contrast the cache hit rates of NCBIC, PPC and Betw reach 71.8%, 69.1% and
66.4%, respectively. Even when the content number rises to 3000, NCBIC still obtains a
20.3% cache hit rate. Compared with PPC (17.6%), Betw (16.1%) and LCE (12.5%), it
achieves 15.3%, 26.1% and 62.4% improvement respectively.

The impact of Zipf parameter α on the cache hit rate is presented in Fig. 3(c). Since the
larger the value of α is, the more user requests are issued for the popular contents. Additionally,
the cache strategies adapted in all four schemes are inclined to give priority to more popular
contents. Thus the cache hit rate of each scheme increases as the value of α increases.
Especially for NCBIC and PPC, they provide more caching opportunities to the content with
high popularity, so their cache hit rates are increased more markedly with the increasing of α.
Owing to the comprehensive consideration of content importance and node state, NCBIC
obtains the top performance among the four caching schemes. From the figure, we can see that
NCBIC excels the other schemes in cache hit rate. Compared with LCE, Betw and PPC,
NCBIC improves the cache hit rate by 152.4%, 73.8% and 58.2% when α is equal to 0.1. Even
when α increases to 1, the improvements are also nearly 43.3%, 12% and 3.7%, respectively.

4.2.2 Average access cost
One benefit of in-network caching is to give fast response to user requests through the caching
nodes rather than the original content servers. Therefore, the response delay and resource
consumption can be reduced accordingly. In this subsection, we evaluate the performance of
access cost by using the average number of hops required to find the satisfied contents.

2410 Luo et al.: Neighbor Cooperation Based In-Network Caching for Content-Centric Networking

0 20 40 60 80 100

0.1

0.2

0.3

0.4

Ca
ch

e
Hi

t R
at

e

Cache Size (MB)

 NCBIC
 LEC
 Betw
 PPC

(a) Varying cache size

0 1000 2000 3000

0.2

0.4

0.6

Ca
ch

e
Hi

t R
at

e

Content Number

 NCBIC
 LEC
 Betw
 PPC

(b) Varying content number

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

Ca
ch

e
Hi

t R
at

e

Zipf Parameter a

 NCBIC
 LEC
 Betw
 PPC

(c) Varying Zipf parameter α

Fig. 3. Cache hit rate with varying network parameters

From Fig. 4(a), we can see that there is a significant decline in the average access cost of
each scheme as the increase of cache size. The main reason is the increasing cache capacity
enables the nodes to provide cache service for more contents and keep the cached contents for
a relatively long time. Owing to the full utilization of neighbor’s cache resources, the cache
replacements of NCBIC are significantly reduced and the time that the contents exist in the
cache is prolonged. Therefore, it obtains the least average access cost of four.

Fig. 4(b) shows the average access cost of each scheme with varying content number. When
the number of contents increases, the cache hit rate declines due to the lack of cache resources.
It inevitably results in a noticeable rise in the average access cost. Nevertheless, thanks to its

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 5, May 2017 2411

high cache hit rate, NCBIC still obtains the best performance. When the number of contents
changes from 100 to 3000, the average access cost of NCBIC is about 15%, 6% and 4% lower
than that of LCE, Betw and PPC on average.

At last, we change the value of Zipf parameter α and observe the variation in average access
cost of each scheme as shown in Fig. 4(c). Obviously, the average access costs of all schemes
are decreased gradually with the increasing of α. It is in agreement with the prior conclusion
that, the increasing preference of user request for popular contents leads to an improvement in
cache hit rate and consequently reduces the average access cost.

0 20 40 60 80 100
4

5

6

7

8

Av
er

ag
e

Ac
ce

ss
 C

os
t (

ho
p)

Cache Size (MB)

 NCBIC
 LEC
 Betw
 PPC

(a) Varying cache size

0 500 1000 1500 2000 2500 3000
3

4

5

6

7

Av
er

ag
e

Ac
ce

ss
 C

os
t (

ho
p)

Content Number

 NCBIC
 LEC
 Betw
 PPC

(b) Varying content number

0.2 0.4 0.6 0.8 1.0

5

6

7

8

Av
er

ag
e

Ac
ce

ss
 C

os
t (

ho
p)

Zipf Parameter a

 NCBIC
 LEC
 Betw
 PPC

(c) Varying Zipf parameter α

Fig. 4. Average access cost with varying network parameters

2412 Luo et al.: Neighbor Cooperation Based In-Network Caching for Content-Centric Networking

4.2.3 Cache Load Distribution

In this subsection, we investigate the cache load distributions of different caching schemes. In
order to clearly represent the discrepancies on the cumulative number of cached contents per
node in different schemes, the content number is increased to 10000 and the request arrival
rate is up to 100 requests per second in the following simulations. Fig. 5 illustrates the
cumulative cache load distributions of the four caching schemes during 100 seconds of
simulation time. As we can see, since LCE requires every node along the delivery path caching
all contents that traverse it, the cumulative number of cached contents per node in LCE is far
exceeds that in NCBIC, PPC and Betw. It is a necessary result of excessive caching
redundancy. Additionally, the cached contents are unevenly distributed among nodes. Some
high centrality nodes carry much more cache pressure than the other one does. Since Betw
prefers to choose the node with the highest centrality along the delivery path as the caching
node, it results in the most serious inhomogeneity of cache load distribution among the four
schemes. In PPC scheme, the content is randomly cached by the nodes in its delivery path with
an optimized caching probability. It means that multiple copies of the content may still be left
on the delivery path. From Fig. 5, we can see that PPC also brings a large amount of caching
redundancy. And the cache load is still relatively concentrated on a part of nodes. That is
caused by the lack of consideration of node state, although it tries to use the probabilistic
caching approach to distribute cache load. By contrast, NCBIC enables the nodes to transfer
part of cached contents to their neighbors’ caches when necessary. It effectively improves the
utilization of network resources while relieving the cache pressure on high centrality nodes.
Therefore, the cache load distribution of NCBIC is more even than that of the others. As we
can see from Fig. 5, NCBIC achieves a more than 50% reduction in the cumulative numbers of
the contents cached on the high centrality nodes compared with Betw.

10 20 30 40 50
0

1000

2000

30000

1000

2000

30000

1000

2000

30000

1000

2000

3000

Node No.

 NCBIC

Cu
m

ul
at

ive
 N

um
be

r o
f C

ac
he

d
Co

nt
en

ts

 LEC

 Betw

 PPC

Fig. 5. Cache load distribution in different caching schemes

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 5, May 2017 2413

5. Conclusion
The rational selection of caching node is a key issue in the in-network caching for CCN. In
order to achieve efficient utilization of resources and improve cache performance, a
distributed cooperative caching scheme is presented in this paper. In this scheme, the
betweenness centrality of nodes is considered for optimizing the caching node selection, and
furthermore, the effect of cache load distribution is considerably improved by transferring
cached contents to neighbor nodes. The simulation results show that the Neighbor
Cooperation Based In-network Caching (NCBIC) can effectively enhance the utilization of
cache resources and improve cache hit rate and average access cost. In the future, we plan to
investigate the efficiency of NCBIC in the context of more realistic applications. Meanwhile,
we will extend our algorithm to the mobile network environments.

References
[1] T. Koponen, M. Chawla, B. G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker and I. Stoica, “A

data-oriented (and beyond) network architecture,” ACM SIGCOMM Computer Communication
Review, vol. 37, no. 4, pp. 181−192, October, 2007. Article (CrossRef Link)

[2] A. Anand, F. Dogar, D. Han, B. Li, H. Lim, M.Machado, W. Wu, A. Akella, D. G. Andersen, J. W.
Byers, S. Seshan and P. Steenkiste, “XIA: An architecture for an evolvable and trustworthy
Internet,” in Proc. of the 10th ACM Workshop on Hot Topics on Networks (Hotnets 2011), pp.
879-884, November 14-15, 2011. Article (CrossRef Link)

[3] M. Ain, D. Trossen, P. Nikander, et al. “PSIRP D2.3-Architecture definition, component
descriptions, and requirements,” in Proc. of the PSIRP 7th FP EU-Funded Project, 2009.
Article (CrossRef Link)

[4] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs and R. L. Braynard,
“Networking named content,” Communications of the ACM, vol. 55, no. 1, pp. 117-124, December,
2012. Article (CrossRef Link)

[5] N. Laoutaris, S. Syntila, and I. Stavrakakis, “Meta algorithms for hierarchical web caches,” in Proc.
of the IEEE International Performance Computing and Communications Conference (IEEE
IPCCC), pp. 445-452, April 15-17, 2004. Article (CrossRef Link)

[6] J. M. Wang, J. Zhang and B. Bensaou, “Intra-as cooperative caching for content-centric networks,”
in Proc. of the 3rd ACM SIGCOMM workshop on Information-centric networking, pp. 61-66,
August, 2013. Article (CrossRef Link)

[7] C. Bernardini, T. Silverston and O. Festor, “MPC: Popularity-based caching strategy for content
centric networks,” in Proc. of the 2013 IEEE International Conference on Communications, pp.
3619-3623, June 9-13, 2013. Article (CrossRef Link).

[8] L. Wang, S. Bayhan, J. Kangasharju, “Optimal chunking and partial caching in information-centric
networks,” Computer Communications, vol. 61, no. 5, pp. 48-57, May, 2015.
Article (CrossRef Link)

[9] Q. Hu, M. Wu, D. Wang and S. Guo, “Lifetime-based greedy caching approach for content-centric
networking,” in Proc. of the 21st International Conference on Telecommunications (ICT), pp.
426-430, May 4-7, 2014. Article (CrossRef Link)

[10] S. Podlipnig and L. Böszörmenyi. “A survey of Web cache replacement strategies,” ACM
Computing Surveys, vol. 35, no. 4, pp. 374−398, December, 2003. Article (CrossRef Link)

[11] L. Muscariello, G. Carofiglio and M. Gallo, “Bandwidth and storage sharing performance in
information centric networking,” in Proc. of the ACM SIGCOMM workshop on
Information-centric networking, pp. 26-31, August, 2011. Article (CrossRef Link)

[12] D. Rossi and G. Rossini, “Caching performance of content centric networksunder multi-path
routing (and more),” Telecom ParisTech, Technical Report, 2011. Article (CrossRef Link)

https://dx.doi.org/10.1145/1282380.1282402
https://dx.doi.org/10.1145/2070562.2070564
http://www.psirp.org/files/Deliverables/FP7-INFSO-ICT-216173-PSIRP-D2.3_ArchitectureDefinition.pdf
https://dx.doi.org/10.1145/1658939.1658941
https://dx.doi.org/10.1109/PCCC.2004.1395054
https://dx.doi.org/10.1145/2491224.2491234
https://dx.doi.org/10.1109/ICC.2013.6655114
https://dx.doi.org/10.1016/j.comcom.2014.12.009
https://dx.doi.org/10.1109/ICT.2014.6845152
https://dx.doi.org/10.1145/954339.954341
https://dx.doi.org/10.1145/2018584.2018593
http://perso.telecom-paristech.fr/%7Edrossi/paper/rossi11ccn-techrep1.pdf

2414 Luo et al.: Neighbor Cooperation Based In-Network Caching for Content-Centric Networking

[13] B. Tang, G. Y. Zhang, Z. J. Xing, Y. X. Wu and X. H. Wang, “An Advanced LRU Cache
Replacement Strategy for Content-Centric Network,” Applied Mechanics and Materials, vols.
462-463, pp. 884-890, November, 2014. Article (CrossRef Link)

[14] S. Eum, K. Nakauchi, M. Murata, Y. Shoji and N. Nishinaga, “CATT: Potential based routing with
content caching for ICN,” in Proc. of the 2nd ICN Workshop on Information-Centric Networking,
pp. 49−54, August, 2012. Article (CrossRef Link)

[15] M. A. Maddah-Ali and U. Niesen, “Decentralized coded caching attains order-optimal
memory-rate tradeoff,” IEEE/ACM Transactions on Networking, vol. 23, no. 4, pp. 1029-1040,
April, 2015. Article (CrossRef Link)

[16] J. Garciareinoso, I. Vidal, D. Diez, D. Corujo and L. A. Rui, “Analysis and Enhancements to
Probabilistic Caching in Content-Centric Networking,” Computer Journal, vol. 58, no. 8, pp.
1842-1856, February, 2015. Article (CrossRef Link)

[17] K. Cho, M. Lee, K. Park, T. T. Kwon, Y. Choi and S. Pack, “WAVE: Popularity-Based and
collaborative in-network caching for contentoriented networks,” in Proc. of the IEEE INFOCOM
Workshop on NOMEN, pp. 316-321, March 25-30, 2012. Article (CrossRef Link)

[18] Y. Li, T. Zhang, X. Xu, Z. Zeng and Y. Liu, “Content popularity and node level matched based
probability caching for content centric networks,” in Proc. of IEEE/CIC International Conference
on Communications in China, pp. 1-6, July 27-29, 2016. Article (CrossRef Link)

[19] S. Huang, Z. Ding and X. Yang, “Caching Strategy Based on Popularity and Saving Content
Delivery Hops in Content Centric Networking,” Journal of Computational Information Systems,
vol. 11, no. 20, pp. 7323-7330, October, 2015. Article (CrossRef Link)

[20] Z. Ming, M. Xu and D. Wang, “Age-Based cooperative caching in information-centric network,”
in Proc. of the 23rd International Conference on Computer Communication and Networks
(ICCCN), pp. 1-8, August 4-7, 2014. Article (CrossRef Link)

[21] W. K. Chai, D. He, I. Psaras and G. Pavlou, “Cache “less for more” in information-centric
networks (extended version),” Computer Communications, vol. 36, no. 7, pp. 758-770, April,
2013. Article (CrossRef Link)

[22] Y. Cheng, M. Wu, M. Zhao and K. Wang, “Socially-aware NodeRank-based Caching Strategy for
Content-Centric Networking,” in Proc. of the 13th International Symposium on Wireless
Communication Systems, pp. 297-303, September, 2016. Article (CrossRef Link)

[23] I. Psaras, W. K. Chai and G. Pavlou, “Probabilistic in-network caching for information-centric
networks,” in Proc. of the second edition of the ICN workshop on Information-centric networking,
pp. 55-60, August, 2012. Article (CrossRef Link)

[24] W. Sirichotedumrong, W. Kumwilaisak, S. Tarnoi and N. Thatphithakkul, “Prioritized
Probabilistic Caching Algorithm in Content Centric Networks,” in Proc. of the 12th International
Conference on Computing and Information Technology, pp. 255-265, December, 2016.
Article (CrossRef Link)

[25] X. Cui, T. Huang and J. Liu, “Design of in-network caching scheme in CCN based on grey
relational analysis,” The Journal of China Universities of Posts and Telecommunications, vol. 21,
no. 2, pp. 1-8, February, 2014. Article (CrossRef Link)

[26] X. Hu, J. Gong, G. Cheng and C. Fan, “Enhancing in-network caching by coupling cache
placement, replacement and location,” in Proc. of 2015 IEEE International Conference on
Communications(ICC’15), pp. 5672-5678, June 8-12, 2015. Article (CrossRef Link)

[27] S. Mastorakis, A. Afanasyev, I. Moiseenko and L. Zhang, “ndnSIM 2.0: A new version of the
NDN simulator for NS-3,” NDN-0028, Technical Report, 2015. Article (CrossRef Link)

http://dx.doi.org/10.4028/www.scientific.net/AMM.462-463.884
https://dx.doi.org/10.1145/2342488.2342500
https://dx.doi.org/10.1109/Allerton.2013.6736555
http://dx.doi.org/10.1093/comjnl/bxv010
http://dx.doi.org/doi:10.1109/INFCOMW.2012.6193512
http://dx.doi.org/doi:10.1109/ICCChina.2016.7636877
http://dx.doi.org/doi:10.12733/jcis15626
http://dx.doi.org/10.1109/ICCCN.2014.6911725
http://dx.doi.org/doi:10.1016/j.comcom.2013.01.007
http://dx.doi.org/10.1109/ISWCS.2016.7600918
http://dx.doi.org/doi:10.1145/2342488.2342501
http://dx.doi.org/doi:10.1007/978-3-319-40415-8_25
http://dx.doi.org/10.1016/S1005-8885(14)60279-X
http://dx.doi.org/doi:10.1109/ICC.2015.7249226
https://named-data.net/wp-content/uploads/2013/07/ndn-0028-1-ndnsim-v2.pdf

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 5, May 2017 2415

Xi Luo is a lecturer in Department of Information Technology, Hunan Police Academy,
P. R. China. She received her B.S. and M.S. degree in Communications Engineering from
Central South University, P. R. China, and her Ph.D degree in computer science from
Central South University, P. R. China. Her general research interests include
content-centric networks, in-network caching technology and content distribution.

Ying An is an associate professor in Institute of Information Security and Big Data,
Central South University, P. R. China. He received his B.S. degree in automatic control
from Central South University, P. R. China, and his M.S. degree in communications
engineering from Central South University, P. R. China, and his Ph.D degree in computer
science from Central South University, P. R. China. His research interests include
information centric networks, delay tolerant networks and optimization of future internet.

