• Title/Summary/Keyword: cables-stayed

Search Result 184, Processing Time 0.028 seconds

Aerodynamic behaviour of an inclined circular cylinder

  • Cheng, Shaohong;Larose, Guy L.;Savage, Mike G.;Tanaka, Hiroshi
    • Wind and Structures
    • /
    • v.6 no.3
    • /
    • pp.197-208
    • /
    • 2003
  • Galloping instability of dry inclined cables of cable-stayed bridges has been reported by Japanese researchers. A suggested stability criterion based on some experimental studies in Japan implies that many of stay cables would be expected to suffer galloping instability, which, if valid, would cause serious difficulty in the design of cable-stayed bridges. However, this is not the case in reality. Thus, it is practically urgent and necessary to confirm the validity of this criterion and possible restriction of it. In the present study, a 2D sectional cable model was tested in the wind tunnel, and effects of various physical parameters were investigated. It is found that the stability criterion suggested by Japanese researchers is more conservative than the results obtained from the current study.

Application of magnetoelastic stress sensors in large steel cables

  • Wang, Guodun;Wang, Ming L.;Zhao, Yang;Chen, Yong;Sun, Bingnan
    • Smart Structures and Systems
    • /
    • v.2 no.2
    • /
    • pp.155-169
    • /
    • 2006
  • In this paper, the application of magnetoelasticity in static tension monitoring for large steel cables is discussed. Magnetoelastic (EM) stress sensors make contact-free tension monitoring possible for hanger cables and post-tensioned cables on suspension and cable-stayed bridges. By quantifying the correlation of magnetic relative permeability with tension and temperature, the EM sensors inspect the load levels in the steel cables. Cable tension monitoring on Qiangjiang (QJ) 4th Bridge demonstrates the reliability of the EM sensors.

Aerodynamic stability of stay cables incorporated with lamps: a case study

  • Li, S.Y.;Chen, Z.Q.;Dong, G.C.;Luo, J.H.
    • Wind and Structures
    • /
    • v.18 no.1
    • /
    • pp.83-101
    • /
    • 2014
  • Lamps installed on stay cables of cable-stayed bridges may alter the configuration of circular cross section of the cables and therefore result in aerodynamically unstable cable vibrations. The background of this study is a preliminary design of lamp installation on the cable-stayed He-dong Bridge in Guangzhou, China. Force measurements and dynamic response measurements wind tunnel tests were carried out to validate the possibility of cable galloping vibrations. It is observed that galloping will occur and the critical wind velocity is far less than the design wind velocity at Guangzhou City stipulated in Chinese Code. Numerical simulations utilizing software ANSYS CFX were subsequently performed and almost the same results as the wind tunnel tests were obtained. Moreover, the pressure and velocity contours around cable-lamp model obtained from numerical simulations indicated that the upstream steel wire in the preliminary design is the key factor for the onset of the galloping vibrations. A modification for the preliminary design of lamp installation, which suggests to remove the two parallel steel wires, is proposed, and it effectiveness is validated in further wind tunnel tests.

Condition assessment of stay cables through enhanced time series classification using a deep learning approach

  • Zhang, Zhiming;Yan, Jin;Li, Liangding;Pan, Hong;Dong, Chuanzhi
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.105-116
    • /
    • 2022
  • Stay cables play an essential role in cable-stayed bridges. Severe vibrations and/or harsh environment may result in cable failures. Therefore, an efficient structural health monitoring (SHM) solution for cable damage detection is necessary. This study proposes a data-driven method for immediately detecting cable damage from measured cable forces by recognizing pattern transition from the intact condition when damage occurs. In the proposed method, pattern recognition for cable damage detection is realized by time series classification (TSC) using a deep learning (DL) model, namely, the long short term memory fully convolutional network (LSTM-FCN). First, a TSC classifier is trained and validated using the cable forces (or cable force ratios) collected from intact stay cables, setting the segmented data series as input and the cable (or cable pair) ID as class labels. Subsequently, the classifier is tested using the data collected under possible damaged conditions. Finally, the cable or cable pair corresponding to the least classification accuracy is recommended as the most probable damaged cable or cable pair. A case study using measured cable forces from an in-service cable-stayed bridge shows that the cable with damage can be correctly identified using the proposed DL-TSC method. Compared with existing cable damage detection methods in the literature, the DL-TSC method requires minor data preprocessing and feature engineering and thus enables fast and convenient early detection in real applications.

Passive control system for seismic protection of a multi-tower cable-stayed bridge

  • Geng, Fangfang;Ding, Youliang;Song, Jianyong;Li, Wanheng;Li, Aiqun
    • Earthquakes and Structures
    • /
    • v.6 no.5
    • /
    • pp.495-514
    • /
    • 2014
  • The performance of passive control system for the seismic protection of a multi-tower cable-stayed bridge with the application of partially longitudinal constraint system is investigated. The seismic responses of the Jiashao Bridge, a six-tower cable-stayed bridge using the partially longitudinal constraint system are studied under real earthquake ground motions. The effects of the passive control devices including the viscous fluid dampers and elastic cables on the seismic responses of the bridge are examined by taking different values of parameters of the devices. Further, the optimization design principle of passive control system using viscous fluid dampers is presented to determine the optimized parameters of the viscous fluid dampers. The results of the investigations show that the control objective of the multi-tower cable-stayed bridge with the partially longitudinal constraint system is to reduce the base shears and moments of bridge towers longitudinally restricted with the bridge deck. The viscous fluid dampers are found to be more effective than elastic cables in controlling the seismic responses. The optimized parameters for the viscous fluid dampers are determined following the principle that the peak displacement at the end of bridge deck reaches to the maximum value, which can yield maximum reductions in the base shears and moments of bridge towers longitudinally restricted with the bridge deck, with slight increases in the base shears and moments of bridge towers longitudinally unrestricted with the bridge deck.

Probabilistic Risk Assessment of a Steel Composite Hybrid Cable-Stayed Bridge Based on the Optimal Reliabilities (최적신뢰성에 의한 강합성 복합사장교의 확률적 위험도평가)

  • Yoon, Jung Hyun;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.4
    • /
    • pp.395-402
    • /
    • 2007
  • Probabilistic risk assessment was conducted on a hybrid cable-stayed bridge consisting of a steel-composite plate girder and a concrete girder with a long span, designed using the working stress design and strength design methods. The component reliabilities of the bridge's cables, pylons, girders, and steel-concrete conjunction were evaluated using the AFOSM(Advanced First Order Second Moment) algorithm and the simulation technique at the critical sections, based on the maximum axial force, shear, and positive and negative moments of the selected sections. For the analysis of system reliability, the hybrid cable-stayed bridge consisting of cables, pylons, and plate girders was modeled into combined failure modes, and for system reliability, the probabilities of failure and reliability index of the structural system were evaluated. Based on the results of this study, the critical failure modes of the hybrid cable-stayed bridge based on the bridge's structural characteristics are suggested, and the efficiency of the partial ETA technique for use in the risk assessment method was confirmed.

Damaged cable detection with statistical analysis, clustering, and deep learning models

  • Son, Hyesook;Yoon, Chanyoung;Kim, Yejin;Jang, Yun;Tran, Linh Viet;Kim, Seung-Eock;Kim, Dong Joo;Park, Jongwoong
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.17-28
    • /
    • 2022
  • The cable component of cable-stayed bridges is gradually impacted by weather conditions, vehicle loads, and material corrosion. The stayed cable is a critical load-carrying part that closely affects the operational stability of a cable-stayed bridge. Damaged cables might lead to the bridge collapse due to their tension capacity reduction. Thus, it is necessary to develop structural health monitoring (SHM) techniques that accurately identify damaged cables. In this work, a combinational identification method of three efficient techniques, including statistical analysis, clustering, and neural network models, is proposed to detect the damaged cable in a cable-stayed bridge. The measured dataset from the bridge was initially preprocessed to remove the outlier channels. Then, the theory and application of each technique for damage detection were introduced. In general, the statistical approach extracts the parameters representing the damage within time series, and the clustering approach identifies the outliers from the data signals as damaged members, while the deep learning approach uses the nonlinear data dependencies in SHM for the training model. The performance of these approaches in classifying the damaged cable was assessed, and the combinational identification method was obtained using the voting ensemble. Finally, the combination method was compared with an existing outlier detection algorithm, support vector machines (SVM). The results demonstrate that the proposed method is robust and provides higher accuracy for the damaged cable detection in the cable-stayed bridge.

Development of Cable Excitation System for Evaluating Dynamic Characteristics of Stay Cables (사장교 케이블 동특성 평가를 위한 케이블 가진시스템 개발)

  • Kim, Nam-Sik;Jeong, Woon;Seo, Ju-Won;Ahn, Sang-Sup
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.71-79
    • /
    • 2003
  • As a critical member of cable-stayed bridges, stay cables play on important role of supporting the entire structure. Traffic, wind or rain-wind induced vibrations of stay cables would be a major cause of degrading both safety and serviceability of the bridge. One of the effective alternatives to solve this problem is to employ the cable dampers. In order to design the cable damper optimally, it is necessary to exactly estimate the dynamic characteristics of the existing cables. To achieve more reliable dynamic properties of stay cables, precise excitations inducing forced vibration are needed. Therefore, in this study, a cable excitation system(exciter) controlled digitally was developed. And to evaluate the performance of the cable exciter developed, a solution of the differential equation of cable motion considering the exciter was derived, Using the cable exciter, sine sweeping and resonance tests on a cable model were carried out to obtain the dynamic characteristics effectively.

Investigation of seismic performance of super long-span cable-stayed bridges

  • Zhang, Xin-Jun;Zhao, Chen-Yang;Guo, Jian
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.493-503
    • /
    • 2018
  • With the further increase of span length, the cable-stayed bridge tends to be more slender, and becomes more susceptible to the seismic action. By taking a super long-span cable-stayed bridge with main span of 1400m as example, structural response of the bridge under the E1 horizontal and vertical seismic excitations is investigated numerically by the multimode seismic response spectrum and time-history analysis respectively, the seismic behavior and also the effect of structural nonlinearity on the seismic response of super long-span cable-stayed bridge are revealed. Furthermore, the effect of structural parameters including the girder depth and width, the tower structural style, the tower height-to-span ratio, the side-tomain span ratio, the auxiliary piers in side spans and the anchorage system of stay cables etc on the seismic performance of super long-span cable-stayed bridge is investigated numerically by the multimode seismic response spectrum analysis, and the favorable earthquake-resistant structural system of super long-span cable-stayed bridge is proposed.

Active Control System for Mitigation of Cable Vibration in Cable-Stayed Bridges (사장교 케이블 진동저감을 위한 능동제어시스템)

  • Hwang, In-Ho;Jeong, Cheol-Oh;Lee, Jong-Han;Lee, Jong-Seh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.557-563
    • /
    • 2007
  • Rain-wind induced cable vibration can cause serious problems in cable-stayed bridge. External dampers attached to the cables have become widely accepted as an effective means for stay-cable vibration suppression. For very long stay-cables, however, such damper systems are rendered ineffective, as the dampers need be attached near the end of cables for aesthetic reasons. A recent study by the authors proposed that a movable anchorage system is replaced direct fixed support of the cable with a support through a bearing and damper. This paper extends the previous work by adding active control system to mitigate the cable vibration. The response of a cable with the proposed active control system is obtained and then compared to those of the cable with and without an external passive damper. The results show that the active control system can provide superior protection than the passive control system for a cable vibration.