• 제목/요약/키워드: cable-supported structures

검색결과 60건 처리시간 0.02초

진동법을 이용한 인장 케이블의 장력 추정에 관한 연구 (Evaluation of Tension Force of Stay Cables Using Vibration Method)

  • 김남식;정운
    • 한국소음진동공학회논문집
    • /
    • 제12권12호
    • /
    • pp.956-963
    • /
    • 2002
  • In a recent construction industry, cable supported structures such as a cable-stayed bridge or space stadium have been increasingly constructed according to rapidly upgrade their related technologies. Generally stay cables as a critical member need to be rearranged for being satisfied with design tension forces. In this purpose, a vibration method has been applied to estimate the tension forces exerted on existing stay cables. In this study, cable vibration tests were tarried out to evaluate the cable tension forces comparing with theoretical and practical formulas. Using the measured frequencies obtained from free vibration and Impulsive tests, an accuracy of the estimated tension forces is confirmed according to use the first single mode only or higher multiple modes.

케이블교량의 비선형해석을 위한 탄성현수선 및 탄성포물선 케이블요소의 비교연구 (Comparison Study of Elastic Catenary and Elastic Parabolic Cable Elements for Nonlinear Analysis of Cable-Supported Bridges)

  • 송요한;김문영
    • 대한토목학회논문집
    • /
    • 제31권5A호
    • /
    • pp.361-367
    • /
    • 2011
  • 케이블구조의 기하학적 비선형해석을 위한 탄성포물선 케이블요소를 제시한다. 이를 위하여 먼저 탄성현수선 케이블요소에 대한 적합조건과 접선강도행렬 유도과정을 간략히 요약한다. 이를 토대로 장력이 충분히 도입되어 자중에 의한 처짐 형상이 포물선에 가깝다는 가정 하에서 무응력길이를 포함하는 탄성포물선 케이블요소의 비선형 힘-변형관계식과 접선강도행렬을 유도한다. 또한 현(chord) 방향으로 두 케이블요소의 등가 공칭장력식을 정의한다. 탄성포물선 케이블요소의 수치적인 정확성을 확인하기 위하여, 경사진 케이블을 한 개의 탄성현수선과 탄성포물선 케이블요소로 각각 모델링하여 매개변수 해석을 수행하고 비교, 분석한 결과를 제시한다. 제시된 탄성포물선요소는 충분한 정확도를 가지고 케이블지지 구조물의 초기치해석 및 기하비선형해석에 효과적으로 적용할 수 있을 것으로 판단된다.

Aerodynamic Flutter Control for Typical Girder Sections of Long-Span Cable-Supported Bridges

  • Yang, Yongxin;Ge, Yaojun
    • Wind and Structures
    • /
    • 제12권3호
    • /
    • pp.205-217
    • /
    • 2009
  • Aerodynamic flutter control for long-span cable-supported bridges was investigated based on three basic girder sections, i.e. streamlined box girder section, box girder section with cantilevered slabs and two-isolated-girder section. Totally four kinds of aerodynamic flutter control measures (adding fairings, central-slotting, adding central stabilizers and adjusting the position of inspection rail) were included in this research. Their flutter control effects on different basic girder sections were evaluated by sectional model or aeroelastic model wind tunnel tests. It is found that all basic girder sections can get aerodynamically more stabled with appropriate aerodynamic flutter control measures, while the control effects are influenced by the details of control measures and girder section configurations. The control effects of the combinations of these four kinds of aerodynamic flutter control measures, such as central-slotting plus central-stabilizer, were also investigated through sectional model wind tunnel tests, summarized and compared to the flutter control effect of single measure respectively.

Load deformation characteristics of shallow suspension footbridge with reverse profiled pre-tensioned cables

  • Huang, Ming-Hui;Thambiratnam, David P.;Perera, Nimal J.
    • Structural Engineering and Mechanics
    • /
    • 제21권4호
    • /
    • pp.375-392
    • /
    • 2005
  • Cable supported structures offer an elegant and economical solution for bridging over long spans with resultant low material content and ease of construction. In this paper, a model of shallow cable supported footbridge with reverse profiled pre-tensioned cables is treated and its load deformation characteristics under different quasi-static loads are investigated. Effects of important parameters such as cable sag and pre-tension are also studied. Numerical results performed on a 3D model show that structural stiffness of this bridge (model) depends not only on the cable sag and cross sectional areas of the cables, but also on the pre-tension in the reverse profiled cables. The tension in the top supporting cables can be adjusted to a high level by the pre-tension in the reverse profiled bottom cables, with the total horizontal force in the bridge structure remaining reasonably constant. It is also evident that pre-tensioned horizontally profiled cables can greatly increase the lateral horizontal stiffness and suppress the lateral horizontal deflection induced by eccentric vertical loads.

케이블 연결 소켓의 인장강도 (Tensile Strength on Connection Socket of Cables)

  • 박강근;이장복;하채원;김재봉
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2008년도 춘계 학술발표회 논문집
    • /
    • pp.37-42
    • /
    • 2008
  • 구조물에서 케이블 부재는 압축이나 휨이 없이 인장력에 의해서 하중을 전달하는 시스템이다. 케이블 시스템은 대공간 구조의 지붕, 공기 지지구조, 프리스트레스 막구조, 케이블 네트워크 구조, 현수구조, 가이드 타워, 해양 프래트폼, 현수교 등의 구조물에 널리 사용되어 왔다. 케이블 부재는 부재 단부에 소켓, 스웨이징, 스프라이스 슬리브, 클립, 웨지, 루프 스프라이스 등에 의해서 하중을 전달 할 수 있다. 본 연구에서는 케이블 연결 소켓의 인장강도에 대한 실험을 수행하고자 한다. 실험결과에서 대부분의 시험체가 케이블이 파단하중에 도달하기 전에 소켓의 연결부에서 파단이 일어났다.

  • PDF

Ambient Vibration measurements and finite element modelling for the Hong Kong Ting Kau Bridge

  • Au, F.T.K.;Tham, L.G.;Lee, P.K.K.;Su, C.;Han, D.J.;Yan, Q.S.;Wong, K.Y.
    • Structural Engineering and Mechanics
    • /
    • 제15권1호
    • /
    • pp.115-134
    • /
    • 2003
  • The Ting Kau Bridge in Hong Kong is a cable-stayed bridge comprising two main spans and two side spans. The bridge deck is supported by three towers, an end pier and an abutment. Each of the three towers consists of a single reinforced concrete mast which reduces its section in steps, and it is strengthened by transverse cables and struts in the transverse vertical plane. The bridge deck is supported by four inclined planes of cables emanating from anchorages at the tower tops. In view of the threat from typhoons, the dynamic behaviour of long-span cable-supported bridges in the region is always an important consideration in their design. This paper is devoted to the ambient vibration measurements of the bridge for evaluation of dynamic characteristics including the natural frequencies and mode shapes. It also describes the modelling of the bridge. A few finite element models are developed and calibrated to match with the field data and the results of subsequent structural health monitoring of the bridge.

Experimental study on the cable rigidness and static behaviors of AERORail structure

  • Li, Fangyuan;Wu, Peifeng;Liu, Dongjie
    • Steel and Composite Structures
    • /
    • 제12권5호
    • /
    • pp.427-444
    • /
    • 2012
  • This paper presented a new aerial platform-AERORail for rail transport and its structure evolution based on the elastic stiffness of cable; through the analysis on the cable properties when the cable supported a small service load with high-tensile force, summarized the theoretical basis of the AERORail structure and the corresponding simplified analysis model. There were 60 groups of experiments for a single naked cable model under different tensile forces and different services loads, and 48 groups of experiments for the cable with rail combined structure model. The experimental results of deflection characteristics were compared with the theoretical values for these two types of structures under the same conditions. It proved that the results almost met the classical cable theory. The reason is that a small deflection was required when this structure was applied. After the tension increments tests with moving load, it is verified that the relationships between the structure stiffness and tension force and service load are simple. Before further research and applications are made, these results are necessary for the determination of the reasonable and economic tensile force, allowable service load for the special span length for this new platform.

케이블댐퍼 감쇠성능의 수치해석적 연구 (Numerical Analysis Study on Damping Performance of Cable Damper)

  • 임성순
    • 복합신소재구조학회 논문집
    • /
    • 제6권2호
    • /
    • pp.97-104
    • /
    • 2015
  • Compared with a strong axial rigidity due to large intial tension, cable has a weak laterally flexural rigidity. A variety of dynamic loads such as traffic loads and wind loads etc. cause the cables to vibrate significantly and affect the mechanical properties and the performance of cables. Therefore, vibration reduction design is an urgent task to control the vibration of cable-supported bridges. Because a various kind of dampers have shown to reduce the amplitude and duration time of vibration of cable from measured date in field test, damper can be considered that it is effective device significantly to reduce the amplitude and duration time in vibration of cable. Vibration characteristics of cable can change according to manufacturing method and type of established form, and damper has been designed according to distribution of natural frequencies and vibration modes. In this study, numerical analysis is used to show the reduction effects of vibrations and present the design of damper for vibration reduction of cable.

Study on mechanical behaviors of cable-supported ribbed beam composite slab structure during construction phase

  • Qiao, W.T.;An, Q.;Wang, D.;Zhao, M.S.
    • Steel and Composite Structures
    • /
    • 제21권1호
    • /
    • pp.177-194
    • /
    • 2016
  • The cable-supported ribbed beam composite slab structure (CBS) is a new type of pre-stressed hybrid structure. The standard construction method of CBS including five steps and two key phases are proposed in this paper. The theoretical analysis and experimental research on a 1:5 scaled model were carried out. First, the tensioning construction method based on deformation control was applied to pre-stress the cables. The research results indicate that the actual tensile force applied to the cable is slightly larger than the theoretical value, and the error is about 6.8%. Subsequently, three support dismantling schemes are discussed. Scheme one indicates that each span of CBS has certain level of mechanical independence such that the construction of a span is not significantly affected by the adjacent spans. It is shown that dismantling from the middle to the ends is an optimal support dismantling method. The experimental research also indicates that by using this method, the CBS behaves identically with the numerical analysis results during the construction and service.

Structural damage alarming and localization of cable-supported bridges using multi-novelty indices: a feasibility study

  • Ni, Yi-Qing;Wang, Junfang;Chan, Tommy H.T.
    • Structural Engineering and Mechanics
    • /
    • 제54권2호
    • /
    • pp.337-362
    • /
    • 2015
  • This paper presents a feasibility study on structural damage alarming and localization of long-span cable-supported bridges using multi-novelty indices formulated by monitoring-derived modal parameters. The proposed method which requires neither structural model nor damage model is applicable to structures of arbitrary complexity. With the intention to enhance the tolerance to measurement noise/uncertainty and the sensitivity to structural damage, an improved novelty index is formulated in terms of auto-associative neural networks (ANNs) where the output vector is designated to differ from the input vector while the training of the ANNs needs only the measured modal properties of the intact structure under in-service conditions. After validating the enhanced capability of the improved novelty index for structural damage alarming over the commonly configured novelty index, the performance of the improved novelty index for damage occurrence detection of large-scale bridges is examined through numerical simulation studies of the suspension Tsing Ma Bridge (TMB) and the cable-stayed Ting Kau Bridge (TKB) incurred with different types of structural damage. Then the improved novelty index is extended to formulate multi-novelty indices in terms of the measured modal frequencies and incomplete modeshape components for damage region identification. The capability of the formulated multi-novelty indices for damage region identification is also examined through numerical simulations of the TMB and TKB.