• Title/Summary/Keyword: cable-supported bridges

Search Result 84, Processing Time 0.024 seconds

Wind-induced vibration of a cantilever arch rib supported by a flexible cable system

  • Hang Zhang;Zilong Gao;Haojun, Tang;Yongle Li
    • Wind and Structures
    • /
    • v.39 no.1
    • /
    • pp.71-84
    • /
    • 2024
  • The wind-resistant performance of bridges is generally evaluated based on the strip assumption. For the arch rib of arch bridges, the situation is different due to the curve axis and the variable cross-sectional size. In the construction stage, the arch rib supported by a cable system exhibits flexible dynamic characteristics, and the wind-resistant performance attracts specially attention. To evaluate the wind-induced vibration of an arch rib with the maximum cantilever state, the finite element model was established to compute the structural dynamic characteristics. Then, a three-dimensional (3D) fluid-solid coupling analysis method was realized. After verifying the reliability of the method based on a square column, the wind-induced vibration of the arch rib was computed. The vortex-induced vibration (VIV) performance of the arch rib was focused and the flow field characteristics were discussed to explain the VIV phenomenon. The results show that the arch rib with the maximum cantilever state had the possibility of VIV at high wind speeds but the galloping was not observed. The lock-in wind speeds were larger than the results based on the strip assumption. Due to the vibration of arch rib, the frequency of shedding vortices along the arch axis trended to be uniform.

Analysis of Regional Relative Humidity Environment for Dehumidification System Efficiency of Suspension Bridge Cable (현수교 케이블 송기시스템 효율화를 위한 지역별 상대습도 환경 분석)

  • Seo, Dong-Woo;Kim, Ga Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.88-94
    • /
    • 2018
  • This study examined the safety of a cable stayed bridge caused by damage to the cable system. Many cable-supported bridges, including cable-stayed bridges and suspension bridges, have been constructed on the Korean peninsula. This requires efficient maintenance and management because this structure has complex structural components and systems. This large structure also often faces risks either from manmade causes or natural phenomena. In 2015, the cables on one cable-stayed bridge in South Korea was struck by lightning, which led to a fire on the cables. These cables were damaged, which put the bridge at risk. This bridge was back in use after a few weeks of investigations and replacements of the cables but this was done at enormous social and economic expense. After this event, risk-based management for infrastructure is required by public demand. Therefore, this study examined the risks on the cable system due to potential damage. In this paper, a one cable-stayed bridge in South Korea was selected and its safety was investigated based on the damage scenarios of cable system for efficient and prompt management, and to support decision making. FEM analysis was conducted to evaluate the safety of the bridges after damage to the cable system.

Change of Statical Behavior and Ultimate Capacity of Steel Cable-stayed Bridges after Cable Failure (케이블 단선 후 강사장교의 구조 및 극한 거동 변화)

  • Kim, Seung-Jun;Choi, Jun-Ho;Won, Deok-Hee;Han, Taek-Hee;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.747-761
    • /
    • 2011
  • This paper presents an investigation on the change in the statical behavior and the ultimate capacity of steel cable-stayed bridges after cable failure. Cable failure can occur due to fire, direct vehicle clash accidents, cable or anchorage fatigue, and so on. Moreover, the cable may be temporarily disconnected during cable replacement work. When cable failure occurs, the load, that was supported by the broken cable is first transferred to another cable. Then the structural state changes due to the interaction between the girder, mast, and cables. Moreover, it can be predicted that the ultimate capacity will decrease after cable failure, because of the loss of the support system. In this study, the analysis method is suggested to find the new equilibrium state after cable failure based on the theory of nonlinear finite element analysis. Moreover, the ultimate analysis method is also suggested to analyze the ultimate behavior of live loads after cable failure. For a more rational analysis, a three-step analysis procedure is suggested and used, which consisted of initial shape analysis, cable failure analysis, and live load analysis. Using this analysis method, an analytical study was performed to investigate the changes in the structural state and ultimate behavior of steel cable-stayed bridges.

An Improved Method for Initial Shape Analysis of Subpension Bridges (현수교의 개선된 초기형상 해석법)

  • Kim, Moon Young;Kyung, Yong Soo;Lee, Jun Sok
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.219-229
    • /
    • 2003
  • The extended tangent stiffness matrices and force-deformation relations of the elastic catenary element were initially derived through the addition of the unstrained length of cables to unknown nodal 'displacements. A beam-column element was then introduced to model the deck and pylon of cable-stayed bridges. The conventional geometric nonlinear analysis, initial force method, and TCUD method were summarized, with an effective method combining two methods presented to determine the initial shapes of cable-stayed bridges with dead loads. In this combined method, TCUD method was applied to eliminate vertical and horizontal displacements at cable-supported points of decks and on top of pylons, respectively. The initial force method was also adopted to eliminate horizontal and vertical displacements of decks and pylons. Finally, the accuracy and validity of the proposed combined method were demonstrated through numerical examples.

Evaluating Performance of Cable-Inspection Robot in Cable-Supported Bridge (케이블지지 교량의 케이블 점검 로봇 성능 평가)

  • Kim, Jaehwan;Seo, Dong-Woo;Jung, Kyu-San;Park, Ki-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.74-79
    • /
    • 2020
  • Safety inspection of cable-supported bridge has increasingly attention as many cable-supported bridges are currently constructed/operated. Whilst cables as a main component in cable-supported bridge should be inspected regularly, traditional method (visual inspection) has limitation to check the condition of cables properly due to restricted factors. It is evidently necessary to develop cable-inspection robot to overcome this concern. In this respect, the main aim in this study is to manufacture the improved robot compared with the existing robot. The improved functions of the robot in this study were that the robot can be operated in large cable diameter (greater than 200 mm) and climbing ability of the robot increases. In addition, electro-magnetic sensor as a non-destructive method in the robot was added to detect damaged cables and performance of the sensor was evaluated in indoor and field experiments. Consequently, the robot was able to move on the cable with ~0.2m/s and to detect damaged cables using the sensor. It was also confirmed that performance of the robot in field test is similar to that in indoor test.

Investigation of Temperature Variation of Bridge Cables under Fire Hazard using Heat Transfer Analysis (열전달 해석을 통한 케이블교량 화재 시 케이블의 온도변화 분석)

  • Chung, Chulhun;Choi, Hyun Sung;Lee, Jungwhee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.5
    • /
    • pp.313-322
    • /
    • 2019
  • Recently, there have been frequent occurrences of bridge fires. Fires in cable-supported bridges can damage and brake cables due to high temperatures. In this study, fire scenarios that can occur on cable-supported bridges were set up. In addition, based on the results of vehicle fire tests, a fire intensity model was proposed and cable heat transfer analyses were performed on a target bridge. The analyses results demonstrated that temperature rises were identified on cables with a smaller cross-sectional area. Furthermore, vehicles other than tankers did not exceed the fire resistance criteria. When the tanker fire occurred on a bridge shoulder, the minimum diameter cable exceeded the fire resistance criteria; the height of the cable exceeding the fire resistance criteria was approximately 14 m from the surface. Therefore, the necessity of countermeasures and reinforcements of fire resistance was established. The results of this study confirmed that indirect evaluation of the temperature changes of bridge cables under fire is possible, and it was deemed necessary to further study the heat transfer analysis considering wind effects and the serviceability of the bridge when the cable temperature rises due to fire.

Automatic modal identification and variability in measured modal vectors of a cable-stayed bridge

  • Ni, Y.Q.;Fan, K.Q.;Zheng, G.;Ko, J.M.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.2
    • /
    • pp.123-139
    • /
    • 2005
  • An automatic modal identification program is developed for continuous extraction of modal parameters of three cable-supported bridges in Hong Kong which are instrumented with a long-term monitoring system. The program employs the Complex Modal Indication Function (CMIF) algorithm for identifying modal properties from continuous ambient vibration measurements in an on-line manner. By using the LabVIEW graphical programming language, the software realizes the algorithm in Virtual Instrument (VI) style. The applicability and implementation issues of the developed software are demonstrated by using one-year measurement data acquired from 67 channels of accelerometers permanently installed on the cable-stayed Ting Kau Bridge. With the continuously identified results, variability in modal vectors due to varying environmental conditions and measurement errors is observed. Such an observation is very helpful for selection of appropriate measured modal vectors for structural health monitoring use.

Numerical Analysis Study on Damping Performance of Cable Damper (케이블댐퍼 감쇠성능의 수치해석적 연구)

  • Yhim, Sung-Soon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.97-104
    • /
    • 2015
  • Compared with a strong axial rigidity due to large intial tension, cable has a weak laterally flexural rigidity. A variety of dynamic loads such as traffic loads and wind loads etc. cause the cables to vibrate significantly and affect the mechanical properties and the performance of cables. Therefore, vibration reduction design is an urgent task to control the vibration of cable-supported bridges. Because a various kind of dampers have shown to reduce the amplitude and duration time of vibration of cable from measured date in field test, damper can be considered that it is effective device significantly to reduce the amplitude and duration time in vibration of cable. Vibration characteristics of cable can change according to manufacturing method and type of established form, and damper has been designed according to distribution of natural frequencies and vibration modes. In this study, numerical analysis is used to show the reduction effects of vibrations and present the design of damper for vibration reduction of cable.

Determination of the Accurate Effective Length for Buckling Design of Cable-Supported Bridges (케이블지지교량의 좌굴설계를 위한 유효좌굴길이 산정)

  • Jin, Man Sik;Kyoung, Yong Soo;Lee, Myung Jae;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.355-363
    • /
    • 2004
  • In order to obtain the effective length factor of beam-column members of plane frames, this paper extensively used an alignment chart approach, based on the nomograph given in LRFD-AISC specification commentaries. However, it should be noted that various simplifications and assumptions were introduced in constructing the alignment chart. To overcome the practical limitations of the alignment chart, this paper proposes a simple but accurate procedure that determined the effective buckling length for stability design of main members of cable-supported bridges. This method requires the full system buckling analysis. The numerical examples showing the suitability of the present scheme are discussed and some conclusions are drawn.

Tensile Strength on Connection Socket of Cables (케이블 연결 소켓의 인장강도)

  • Park, Kang-Geun;Lee, Jang-Bok;Ha, Chae-Won;Kim, Jae-Bong
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.37-42
    • /
    • 2008
  • Cable member in structure is tension systems in which the load carrying members transmit loads to support system by tensile stress with no compression or flexure allowed. Cable system have been widely used large span structure roof, air-supported structure, prestressed membrane, cable network roof, suspension structures, guyed tower, ocean platforms, suspension bridges. Cable member can transmit loads by the edge connected system such as socket, swaging, mechanical splice sleave, clip, wedge, loop splice etc. This study will shown an experimental results on the strength of connection socket of cables. In the results of experiment, most of cable connection specimen occurred the failure at the connection socket part before the cable arrived at tensile failure load.

  • PDF